Limits...
SB225002 Induces Cell Death and Cell Cycle Arrest in Acute Lymphoblastic Leukemia Cells through the Activation of GLIPR1.

de Vasconcellos JF, Laranjeira AB, Leal PC, Bhasin MK, Zenatti PP, Nunes RJ, Yunes RA, Nowill AE, Libermann TA, Zerbini LF, Yunes JA - PLoS ONE (2015)

Bottom Line: We found that SB225002 has a significant pro-apoptotic effect against both B- and T-ALL cell lines.Moreover, GLIPR1 silencing resulted in increased ROS levels both in untreated and SB225002-treated cells.In conclusion, SB225002 induces cell cycle arrest and apoptosis in different B- and T-ALL cell lines.

View Article: PubMed Central - PubMed

Affiliation: Centro Infantil Boldrini, Campinas, SP, Brazil; Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil; BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America.

ABSTRACT
Acute Lymphoblastic Leukemia (ALL) is the most frequent childhood malignancy. In the effort to find new anti-leukemic agents, we evaluated the small drug SB225002 (N-(2-hydroxy-4-nitrophenyl)-N'-(2-bromophenyl)urea). Although initially described as a selective antagonist of CXCR2, later studies have identified other cellular targets for SB225002, with potential medicinal use in cancer. We found that SB225002 has a significant pro-apoptotic effect against both B- and T-ALL cell lines. Cell cycle analysis demonstrated that treatment with SB225002 induces G2-M cell cycle arrest. Transcriptional profiling revealed that SB225002-mediated apoptosis triggered a transcriptional program typical of tubulin binding agents. Network analysis revealed the activation of genes linked to the JUN and p53 pathways and inhibition of genes linked to the TNF pathway. Early cellular effects activated by SB225002 included the up-regulation of GLIPR1, a p53-target gene shown to have pro-apoptotic activities in prostate and bladder cancer. Silencing of GLIPR1 in B- and T-ALL cell lines resulted in increased resistance to SB225002. Although SB225002 promoted ROS increase in ALL cells, antioxidant N-Acetyl Cysteine pre-treatment only modestly attenuated cell death, implying that the pro-apoptotic effects of SB225002 are not exclusively mediated by ROS. Moreover, GLIPR1 silencing resulted in increased ROS levels both in untreated and SB225002-treated cells. In conclusion, SB225002 induces cell cycle arrest and apoptosis in different B- and T-ALL cell lines. Inhibition of tubulin function with concurrent activation of the p53 pathway, in particular, its downstream target GLIPR1, seems to underlie the anti-leukemic effect of SB225002.

No MeSH data available.


Related in: MedlinePlus

Connectivity Map and Ingenuity Pathway Analysis using the SB225002-derived gene expression signature.(A) Connectivity Map (C-Map) analysis using the gene expression signature of Jurkat cells treated with SB225002 [IC50] for 9 h. Compounds colored as black bars in each respectively C-Map plot. Compounds are color-coded as follows: blue, PI3K/mTOR inhibitors; green, HSP90 inhibitors; red, tubulin inhibitors. (B) Signaling pathways activated in Jurkat cells in response to 6 h of SB225002 [IC50] treatment. The statistical threshold (line without boxes) represents the cut-off for significance on the log scale (y-axis, left side). The ratio (line with boxes) of the number of significant genes from the data set that mapped to a pathway divided by the total number of genes from the pathway is also shown (y axis, right side). (C)JUN, (D)p53 and (E)TNF pathways are modulated in Jurkat cells after 6 h of SB225002 [IC50] treatment. Analyses were performed using the Ingenuity Pathways Analysis package (Ingenuity Systems).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4547718&req=5

pone.0134783.g002: Connectivity Map and Ingenuity Pathway Analysis using the SB225002-derived gene expression signature.(A) Connectivity Map (C-Map) analysis using the gene expression signature of Jurkat cells treated with SB225002 [IC50] for 9 h. Compounds colored as black bars in each respectively C-Map plot. Compounds are color-coded as follows: blue, PI3K/mTOR inhibitors; green, HSP90 inhibitors; red, tubulin inhibitors. (B) Signaling pathways activated in Jurkat cells in response to 6 h of SB225002 [IC50] treatment. The statistical threshold (line without boxes) represents the cut-off for significance on the log scale (y-axis, left side). The ratio (line with boxes) of the number of significant genes from the data set that mapped to a pathway divided by the total number of genes from the pathway is also shown (y axis, right side). (C)JUN, (D)p53 and (E)TNF pathways are modulated in Jurkat cells after 6 h of SB225002 [IC50] treatment. Analyses were performed using the Ingenuity Pathways Analysis package (Ingenuity Systems).

Mentions: The gene expression signature of Jurkat cells treated during 9 h with SB225002 was compared to the Connectivity Map (C-Map) database (build 02), which included 6,100 genome-wide expression profiles representing 1,309 compounds. As shown in Fig 2A, the transcriptome effect of SB225002 showed high similarity to inhibitors of the PI3K/mTOR pathway (LY-294002, sirolimus, and wortmannin), inhibitors of the HSP90 chaperone (tanespimycin, 5255229, and monorden) and tubulin binding agents (5252917, rotenone, colchicine, podophyllotoxin, fenbendazole, and vinburnine). Importantly, 6 out of the top 17 compounds positively associated with the SB225002 signature were tubulin inhibitors. Jurkat and REH cells treated with SB225002 showed no alterations in p-PDK1 Ser241, p-AKT Ser473, and p-GSK3beta Ser9 levels (S2 Fig). On the other hand, cell cycle arrest at G2/M (Fig 1C), and suppression of microtubule polymerization [4] are in agreement with SB225002 targeting of tubulin.


SB225002 Induces Cell Death and Cell Cycle Arrest in Acute Lymphoblastic Leukemia Cells through the Activation of GLIPR1.

de Vasconcellos JF, Laranjeira AB, Leal PC, Bhasin MK, Zenatti PP, Nunes RJ, Yunes RA, Nowill AE, Libermann TA, Zerbini LF, Yunes JA - PLoS ONE (2015)

Connectivity Map and Ingenuity Pathway Analysis using the SB225002-derived gene expression signature.(A) Connectivity Map (C-Map) analysis using the gene expression signature of Jurkat cells treated with SB225002 [IC50] for 9 h. Compounds colored as black bars in each respectively C-Map plot. Compounds are color-coded as follows: blue, PI3K/mTOR inhibitors; green, HSP90 inhibitors; red, tubulin inhibitors. (B) Signaling pathways activated in Jurkat cells in response to 6 h of SB225002 [IC50] treatment. The statistical threshold (line without boxes) represents the cut-off for significance on the log scale (y-axis, left side). The ratio (line with boxes) of the number of significant genes from the data set that mapped to a pathway divided by the total number of genes from the pathway is also shown (y axis, right side). (C)JUN, (D)p53 and (E)TNF pathways are modulated in Jurkat cells after 6 h of SB225002 [IC50] treatment. Analyses were performed using the Ingenuity Pathways Analysis package (Ingenuity Systems).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4547718&req=5

pone.0134783.g002: Connectivity Map and Ingenuity Pathway Analysis using the SB225002-derived gene expression signature.(A) Connectivity Map (C-Map) analysis using the gene expression signature of Jurkat cells treated with SB225002 [IC50] for 9 h. Compounds colored as black bars in each respectively C-Map plot. Compounds are color-coded as follows: blue, PI3K/mTOR inhibitors; green, HSP90 inhibitors; red, tubulin inhibitors. (B) Signaling pathways activated in Jurkat cells in response to 6 h of SB225002 [IC50] treatment. The statistical threshold (line without boxes) represents the cut-off for significance on the log scale (y-axis, left side). The ratio (line with boxes) of the number of significant genes from the data set that mapped to a pathway divided by the total number of genes from the pathway is also shown (y axis, right side). (C)JUN, (D)p53 and (E)TNF pathways are modulated in Jurkat cells after 6 h of SB225002 [IC50] treatment. Analyses were performed using the Ingenuity Pathways Analysis package (Ingenuity Systems).
Mentions: The gene expression signature of Jurkat cells treated during 9 h with SB225002 was compared to the Connectivity Map (C-Map) database (build 02), which included 6,100 genome-wide expression profiles representing 1,309 compounds. As shown in Fig 2A, the transcriptome effect of SB225002 showed high similarity to inhibitors of the PI3K/mTOR pathway (LY-294002, sirolimus, and wortmannin), inhibitors of the HSP90 chaperone (tanespimycin, 5255229, and monorden) and tubulin binding agents (5252917, rotenone, colchicine, podophyllotoxin, fenbendazole, and vinburnine). Importantly, 6 out of the top 17 compounds positively associated with the SB225002 signature were tubulin inhibitors. Jurkat and REH cells treated with SB225002 showed no alterations in p-PDK1 Ser241, p-AKT Ser473, and p-GSK3beta Ser9 levels (S2 Fig). On the other hand, cell cycle arrest at G2/M (Fig 1C), and suppression of microtubule polymerization [4] are in agreement with SB225002 targeting of tubulin.

Bottom Line: We found that SB225002 has a significant pro-apoptotic effect against both B- and T-ALL cell lines.Moreover, GLIPR1 silencing resulted in increased ROS levels both in untreated and SB225002-treated cells.In conclusion, SB225002 induces cell cycle arrest and apoptosis in different B- and T-ALL cell lines.

View Article: PubMed Central - PubMed

Affiliation: Centro Infantil Boldrini, Campinas, SP, Brazil; Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil; BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America.

ABSTRACT
Acute Lymphoblastic Leukemia (ALL) is the most frequent childhood malignancy. In the effort to find new anti-leukemic agents, we evaluated the small drug SB225002 (N-(2-hydroxy-4-nitrophenyl)-N'-(2-bromophenyl)urea). Although initially described as a selective antagonist of CXCR2, later studies have identified other cellular targets for SB225002, with potential medicinal use in cancer. We found that SB225002 has a significant pro-apoptotic effect against both B- and T-ALL cell lines. Cell cycle analysis demonstrated that treatment with SB225002 induces G2-M cell cycle arrest. Transcriptional profiling revealed that SB225002-mediated apoptosis triggered a transcriptional program typical of tubulin binding agents. Network analysis revealed the activation of genes linked to the JUN and p53 pathways and inhibition of genes linked to the TNF pathway. Early cellular effects activated by SB225002 included the up-regulation of GLIPR1, a p53-target gene shown to have pro-apoptotic activities in prostate and bladder cancer. Silencing of GLIPR1 in B- and T-ALL cell lines resulted in increased resistance to SB225002. Although SB225002 promoted ROS increase in ALL cells, antioxidant N-Acetyl Cysteine pre-treatment only modestly attenuated cell death, implying that the pro-apoptotic effects of SB225002 are not exclusively mediated by ROS. Moreover, GLIPR1 silencing resulted in increased ROS levels both in untreated and SB225002-treated cells. In conclusion, SB225002 induces cell cycle arrest and apoptosis in different B- and T-ALL cell lines. Inhibition of tubulin function with concurrent activation of the p53 pathway, in particular, its downstream target GLIPR1, seems to underlie the anti-leukemic effect of SB225002.

No MeSH data available.


Related in: MedlinePlus