Limits...
Androgenetic alopecia: new insights into the pathogenesis and mechanism of hair loss.

Sinclair R, Torkamani N, Jones L - F1000Res (2015)

Bottom Line: The hair follicle is a complete mini-organ that lends itself as a model for investigation of a variety of complex biological phenomena, including stem cell biology, organ regeneration and cloning.  The arrector pili muscle inserts into the hair follicle at the level of the bulge- the epithelial stem cell niche.  The arrector pili muscle has been previously thought to be merely a bystander and not to have an active role in hair disease.Computer generated 3D reconstructions of the arrector pili muscle have helped explain why women with androgenetic alopecia (AGA) experience diffuse hair loss rather than the patterned baldness seen in men.  Loss of attachment between the bulge stem cell population and the arrector pili muscle also explains why miniaturization is irreversible in AGA but not alopecia areata.A new model for the progression of AGA is presented.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicine, University of Melbourne, Victoria, Australia ; Epworth Dermatology, Victoria, Australia ; Sinclair Dermatology, Victoria, Australia.

ABSTRACT
The hair follicle is a complete mini-organ that lends itself as a model for investigation of a variety of complex biological phenomena, including stem cell biology, organ regeneration and cloning.  The arrector pili muscle inserts into the hair follicle at the level of the bulge- the epithelial stem cell niche.  The arrector pili muscle has been previously thought to be merely a bystander and not to have an active role in hair disease. Computer generated 3D reconstructions of the arrector pili muscle have helped explain why women with androgenetic alopecia (AGA) experience diffuse hair loss rather than the patterned baldness seen in men.  Loss of attachment between the bulge stem cell population and the arrector pili muscle also explains why miniaturization is irreversible in AGA but not alopecia areata. A new model for the progression of AGA is presented.

No MeSH data available.


Related in: MedlinePlus

Sinclair scale for female pattern hair loss.Stage 1 is normal. Stage 2 shows widening of the central part. Stage 3 shows widening of the central part and loss of volume lateral to the part line. Stage 4 shows the development of a bald spot anteriorly. Stage 5 shows advanced hair loss.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4544386&req=5

f1: Sinclair scale for female pattern hair loss.Stage 1 is normal. Stage 2 shows widening of the central part. Stage 3 shows widening of the central part and loss of volume lateral to the part line. Stage 4 shows the development of a bald spot anteriorly. Stage 5 shows advanced hair loss.

Mentions: Androgenetic alopecia (AGA) affects both genders and is characterised by hair loss in a distinctive and reproducible pattern from the scalp1. Bitemporal recession affects 98.6% of men and 64.4% of women, whereas mid-frontal hair loss (Figure 1) affects nearly two thirds of women over the age of 80 years, and three quarters of men over 80 years have mid-frontal and vertex hair loss2. Local and systemic androgens transform large terminal follicles into smaller vellus-like ones3. Follicular miniaturization is the histological hallmark of AGA4,5.


Androgenetic alopecia: new insights into the pathogenesis and mechanism of hair loss.

Sinclair R, Torkamani N, Jones L - F1000Res (2015)

Sinclair scale for female pattern hair loss.Stage 1 is normal. Stage 2 shows widening of the central part. Stage 3 shows widening of the central part and loss of volume lateral to the part line. Stage 4 shows the development of a bald spot anteriorly. Stage 5 shows advanced hair loss.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4544386&req=5

f1: Sinclair scale for female pattern hair loss.Stage 1 is normal. Stage 2 shows widening of the central part. Stage 3 shows widening of the central part and loss of volume lateral to the part line. Stage 4 shows the development of a bald spot anteriorly. Stage 5 shows advanced hair loss.
Mentions: Androgenetic alopecia (AGA) affects both genders and is characterised by hair loss in a distinctive and reproducible pattern from the scalp1. Bitemporal recession affects 98.6% of men and 64.4% of women, whereas mid-frontal hair loss (Figure 1) affects nearly two thirds of women over the age of 80 years, and three quarters of men over 80 years have mid-frontal and vertex hair loss2. Local and systemic androgens transform large terminal follicles into smaller vellus-like ones3. Follicular miniaturization is the histological hallmark of AGA4,5.

Bottom Line: The hair follicle is a complete mini-organ that lends itself as a model for investigation of a variety of complex biological phenomena, including stem cell biology, organ regeneration and cloning.  The arrector pili muscle inserts into the hair follicle at the level of the bulge- the epithelial stem cell niche.  The arrector pili muscle has been previously thought to be merely a bystander and not to have an active role in hair disease.Computer generated 3D reconstructions of the arrector pili muscle have helped explain why women with androgenetic alopecia (AGA) experience diffuse hair loss rather than the patterned baldness seen in men.  Loss of attachment between the bulge stem cell population and the arrector pili muscle also explains why miniaturization is irreversible in AGA but not alopecia areata.A new model for the progression of AGA is presented.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicine, University of Melbourne, Victoria, Australia ; Epworth Dermatology, Victoria, Australia ; Sinclair Dermatology, Victoria, Australia.

ABSTRACT
The hair follicle is a complete mini-organ that lends itself as a model for investigation of a variety of complex biological phenomena, including stem cell biology, organ regeneration and cloning.  The arrector pili muscle inserts into the hair follicle at the level of the bulge- the epithelial stem cell niche.  The arrector pili muscle has been previously thought to be merely a bystander and not to have an active role in hair disease. Computer generated 3D reconstructions of the arrector pili muscle have helped explain why women with androgenetic alopecia (AGA) experience diffuse hair loss rather than the patterned baldness seen in men.  Loss of attachment between the bulge stem cell population and the arrector pili muscle also explains why miniaturization is irreversible in AGA but not alopecia areata. A new model for the progression of AGA is presented.

No MeSH data available.


Related in: MedlinePlus