Limits...
The Amborella vacuolar processing enzyme family.

Poncet V, Scutt C, Tournebize R, Villegente M, Cueff G, Rajjou L, Balliau T, Zivy M, Fogliani B, Job C, de Kochko A, Sarramegna-Burtet V, Job D - Front Plant Sci (2015)

Bottom Line: Toward the goal of identifying proteome signatures that could be associated with the origin and early diversification of angiosperms, we previously characterized the 11S-legumin-type seed storage proteins from Amborella trichopoda, a rainforest shrub endemic to New Caledonia that is also the probable sister to all other angiosperms (Amborella Genome Project, 2013).Three genes were found to encode VPEs in the Amborella's genome.A further important duplication within the VPE family appears to have occurred in common ancestor of the core eudicots, while many more recent duplications have also occurred in specific taxa, including both Arabidopsis thaliana and Amborella.

View Article: PubMed Central - PubMed

Affiliation: Institut de Recherche pour le Développement, UMR Diversité, Adaptation et Développement des Plantes Montpellier, France.

ABSTRACT
Most vacuolar proteins are synthesized on rough endoplasmic reticulum as proprotein precursors and then transported to the vacuoles, where they are converted into their respective mature forms by vacuolar processing enzymes (VPEs). In the case of the seed storage proteins, this process is of major importance, as it conditions the establishment of vigorous seedlings. Toward the goal of identifying proteome signatures that could be associated with the origin and early diversification of angiosperms, we previously characterized the 11S-legumin-type seed storage proteins from Amborella trichopoda, a rainforest shrub endemic to New Caledonia that is also the probable sister to all other angiosperms (Amborella Genome Project, 2013). In the present study, proteomic and genomic approaches were used to characterize the VPE family in this species. Three genes were found to encode VPEs in the Amborella's genome. Phylogenetic analyses showed that the Amborella sequences grouped within two major clades of angiosperm VPEs, indicating that the duplication that generated the ancestors of these clades occurred before the most recent common ancestor of living angiosperms. A further important duplication within the VPE family appears to have occurred in common ancestor of the core eudicots, while many more recent duplications have also occurred in specific taxa, including both Arabidopsis thaliana and Amborella. An analysis of natural genetic variation for each of the three Amborella VPE genes revealed the absence of selective forces acting on intronic and exonic single-nucleotide polymorphisms among several natural Amborella populations in New Caledonia.

No MeSH data available.


Related in: MedlinePlus

A schematic reconstruction of the evolution of the VPE family in plants showing the origins of the duplication events that occurred at various evolutionary stages. Asterisks indicate the gene duplication events that produced the four VPEs in present-day Arabidopsis.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4544213&req=5

Figure 5: A schematic reconstruction of the evolution of the VPE family in plants showing the origins of the duplication events that occurred at various evolutionary stages. Asterisks indicate the gene duplication events that produced the four VPEs in present-day Arabidopsis.

Mentions: The phylogenetic reconstructions presented here (Figure 2; Supplemental Figure S3), incorporating novel sequences from Amborella and a wide range of land plants, indicate the four VPE genes in Arabidopsis to have been generated through three duplication events that occurred at quite distinct evolutionary stages. The conclusions of this analysis are summarized in Figure 5. In non-seed plants, including bryophytes such as Physcomitrella and non-seed, vascular plants such as Selaginella, several VPEs are found, though these group together in a clade that is positioned externally to all seed plant VPEs. Thus, the α-, β-, γ-, and δ-VPEs of Arabidopsis share no direct one-to-one relationships of orthology with VPEs in non-seed plants. Similarly, multiple gymnosperm VPEs occur together in a clade that groups, though with modest bootstrap support, in a sister position to a clade containing all angiosperm VPEs. Accordingly, the α-, β-, γ-, and δ-VPEs of Arabidopsis appear to share no direct one-to-one relationships of orthology with VPEs from gymnosperms.


The Amborella vacuolar processing enzyme family.

Poncet V, Scutt C, Tournebize R, Villegente M, Cueff G, Rajjou L, Balliau T, Zivy M, Fogliani B, Job C, de Kochko A, Sarramegna-Burtet V, Job D - Front Plant Sci (2015)

A schematic reconstruction of the evolution of the VPE family in plants showing the origins of the duplication events that occurred at various evolutionary stages. Asterisks indicate the gene duplication events that produced the four VPEs in present-day Arabidopsis.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4544213&req=5

Figure 5: A schematic reconstruction of the evolution of the VPE family in plants showing the origins of the duplication events that occurred at various evolutionary stages. Asterisks indicate the gene duplication events that produced the four VPEs in present-day Arabidopsis.
Mentions: The phylogenetic reconstructions presented here (Figure 2; Supplemental Figure S3), incorporating novel sequences from Amborella and a wide range of land plants, indicate the four VPE genes in Arabidopsis to have been generated through three duplication events that occurred at quite distinct evolutionary stages. The conclusions of this analysis are summarized in Figure 5. In non-seed plants, including bryophytes such as Physcomitrella and non-seed, vascular plants such as Selaginella, several VPEs are found, though these group together in a clade that is positioned externally to all seed plant VPEs. Thus, the α-, β-, γ-, and δ-VPEs of Arabidopsis share no direct one-to-one relationships of orthology with VPEs in non-seed plants. Similarly, multiple gymnosperm VPEs occur together in a clade that groups, though with modest bootstrap support, in a sister position to a clade containing all angiosperm VPEs. Accordingly, the α-, β-, γ-, and δ-VPEs of Arabidopsis appear to share no direct one-to-one relationships of orthology with VPEs from gymnosperms.

Bottom Line: Toward the goal of identifying proteome signatures that could be associated with the origin and early diversification of angiosperms, we previously characterized the 11S-legumin-type seed storage proteins from Amborella trichopoda, a rainforest shrub endemic to New Caledonia that is also the probable sister to all other angiosperms (Amborella Genome Project, 2013).Three genes were found to encode VPEs in the Amborella's genome.A further important duplication within the VPE family appears to have occurred in common ancestor of the core eudicots, while many more recent duplications have also occurred in specific taxa, including both Arabidopsis thaliana and Amborella.

View Article: PubMed Central - PubMed

Affiliation: Institut de Recherche pour le Développement, UMR Diversité, Adaptation et Développement des Plantes Montpellier, France.

ABSTRACT
Most vacuolar proteins are synthesized on rough endoplasmic reticulum as proprotein precursors and then transported to the vacuoles, where they are converted into their respective mature forms by vacuolar processing enzymes (VPEs). In the case of the seed storage proteins, this process is of major importance, as it conditions the establishment of vigorous seedlings. Toward the goal of identifying proteome signatures that could be associated with the origin and early diversification of angiosperms, we previously characterized the 11S-legumin-type seed storage proteins from Amborella trichopoda, a rainforest shrub endemic to New Caledonia that is also the probable sister to all other angiosperms (Amborella Genome Project, 2013). In the present study, proteomic and genomic approaches were used to characterize the VPE family in this species. Three genes were found to encode VPEs in the Amborella's genome. Phylogenetic analyses showed that the Amborella sequences grouped within two major clades of angiosperm VPEs, indicating that the duplication that generated the ancestors of these clades occurred before the most recent common ancestor of living angiosperms. A further important duplication within the VPE family appears to have occurred in common ancestor of the core eudicots, while many more recent duplications have also occurred in specific taxa, including both Arabidopsis thaliana and Amborella. An analysis of natural genetic variation for each of the three Amborella VPE genes revealed the absence of selective forces acting on intronic and exonic single-nucleotide polymorphisms among several natural Amborella populations in New Caledonia.

No MeSH data available.


Related in: MedlinePlus