Limits...
The Amborella vacuolar processing enzyme family.

Poncet V, Scutt C, Tournebize R, Villegente M, Cueff G, Rajjou L, Balliau T, Zivy M, Fogliani B, Job C, de Kochko A, Sarramegna-Burtet V, Job D - Front Plant Sci (2015)

Bottom Line: Toward the goal of identifying proteome signatures that could be associated with the origin and early diversification of angiosperms, we previously characterized the 11S-legumin-type seed storage proteins from Amborella trichopoda, a rainforest shrub endemic to New Caledonia that is also the probable sister to all other angiosperms (Amborella Genome Project, 2013).Three genes were found to encode VPEs in the Amborella's genome.A further important duplication within the VPE family appears to have occurred in common ancestor of the core eudicots, while many more recent duplications have also occurred in specific taxa, including both Arabidopsis thaliana and Amborella.

View Article: PubMed Central - PubMed

Affiliation: Institut de Recherche pour le Développement, UMR Diversité, Adaptation et Développement des Plantes Montpellier, France.

ABSTRACT
Most vacuolar proteins are synthesized on rough endoplasmic reticulum as proprotein precursors and then transported to the vacuoles, where they are converted into their respective mature forms by vacuolar processing enzymes (VPEs). In the case of the seed storage proteins, this process is of major importance, as it conditions the establishment of vigorous seedlings. Toward the goal of identifying proteome signatures that could be associated with the origin and early diversification of angiosperms, we previously characterized the 11S-legumin-type seed storage proteins from Amborella trichopoda, a rainforest shrub endemic to New Caledonia that is also the probable sister to all other angiosperms (Amborella Genome Project, 2013). In the present study, proteomic and genomic approaches were used to characterize the VPE family in this species. Three genes were found to encode VPEs in the Amborella's genome. Phylogenetic analyses showed that the Amborella sequences grouped within two major clades of angiosperm VPEs, indicating that the duplication that generated the ancestors of these clades occurred before the most recent common ancestor of living angiosperms. A further important duplication within the VPE family appears to have occurred in common ancestor of the core eudicots, while many more recent duplications have also occurred in specific taxa, including both Arabidopsis thaliana and Amborella. An analysis of natural genetic variation for each of the three Amborella VPE genes revealed the absence of selective forces acting on intronic and exonic single-nucleotide polymorphisms among several natural Amborella populations in New Caledonia.

No MeSH data available.


Related in: MedlinePlus

Summary of an ML phylogeny of plant VPE proteins, rooted between seed and non-seed plant VPEs, showing Amborella proteins in the most basal positions of two well-supported clades of angiosperm α/γ/δ-VPEs and β-VPEs, respectively. The figure only shows a simplified tree (see Materials and Methods). This phylogeny is given in full in Supplemental Figure S3. Amino acid sequences used to construct the tree are listed in Supplemental Figure S2.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4544213&req=5

Figure 2: Summary of an ML phylogeny of plant VPE proteins, rooted between seed and non-seed plant VPEs, showing Amborella proteins in the most basal positions of two well-supported clades of angiosperm α/γ/δ-VPEs and β-VPEs, respectively. The figure only shows a simplified tree (see Materials and Methods). This phylogeny is given in full in Supplemental Figure S3. Amino acid sequences used to construct the tree are listed in Supplemental Figure S2.

Mentions: The phylogenetic reconstruction of embryophyte VPE proteins (Figure 2; Supplemental Figure S3) shows two sister clades of VPEs from angiosperms, of which one clade contains the α-, γ-, and δ-VPE proteins from Arabidopsis (“Angiosperm α/γ/δ-VPE clade”), while the other contains the β-VPE protein from Arabidopsis (“Angiosperm β-VPE clade”). The presence of Amborella VPEs within each of these two clades is very well supported (100% bootstrap support in each case). Amborella proteins occupy basal positions in both the angiosperm α/γ/δ- and β-VPE clades, albeit with modest bootstrap support. Gymnosperm VPEs and non-seed plant VPEs group in two further clades, externally to the combined clade of angiosperm α/γ/δ- and β-VPEs.


The Amborella vacuolar processing enzyme family.

Poncet V, Scutt C, Tournebize R, Villegente M, Cueff G, Rajjou L, Balliau T, Zivy M, Fogliani B, Job C, de Kochko A, Sarramegna-Burtet V, Job D - Front Plant Sci (2015)

Summary of an ML phylogeny of plant VPE proteins, rooted between seed and non-seed plant VPEs, showing Amborella proteins in the most basal positions of two well-supported clades of angiosperm α/γ/δ-VPEs and β-VPEs, respectively. The figure only shows a simplified tree (see Materials and Methods). This phylogeny is given in full in Supplemental Figure S3. Amino acid sequences used to construct the tree are listed in Supplemental Figure S2.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4544213&req=5

Figure 2: Summary of an ML phylogeny of plant VPE proteins, rooted between seed and non-seed plant VPEs, showing Amborella proteins in the most basal positions of two well-supported clades of angiosperm α/γ/δ-VPEs and β-VPEs, respectively. The figure only shows a simplified tree (see Materials and Methods). This phylogeny is given in full in Supplemental Figure S3. Amino acid sequences used to construct the tree are listed in Supplemental Figure S2.
Mentions: The phylogenetic reconstruction of embryophyte VPE proteins (Figure 2; Supplemental Figure S3) shows two sister clades of VPEs from angiosperms, of which one clade contains the α-, γ-, and δ-VPE proteins from Arabidopsis (“Angiosperm α/γ/δ-VPE clade”), while the other contains the β-VPE protein from Arabidopsis (“Angiosperm β-VPE clade”). The presence of Amborella VPEs within each of these two clades is very well supported (100% bootstrap support in each case). Amborella proteins occupy basal positions in both the angiosperm α/γ/δ- and β-VPE clades, albeit with modest bootstrap support. Gymnosperm VPEs and non-seed plant VPEs group in two further clades, externally to the combined clade of angiosperm α/γ/δ- and β-VPEs.

Bottom Line: Toward the goal of identifying proteome signatures that could be associated with the origin and early diversification of angiosperms, we previously characterized the 11S-legumin-type seed storage proteins from Amborella trichopoda, a rainforest shrub endemic to New Caledonia that is also the probable sister to all other angiosperms (Amborella Genome Project, 2013).Three genes were found to encode VPEs in the Amborella's genome.A further important duplication within the VPE family appears to have occurred in common ancestor of the core eudicots, while many more recent duplications have also occurred in specific taxa, including both Arabidopsis thaliana and Amborella.

View Article: PubMed Central - PubMed

Affiliation: Institut de Recherche pour le Développement, UMR Diversité, Adaptation et Développement des Plantes Montpellier, France.

ABSTRACT
Most vacuolar proteins are synthesized on rough endoplasmic reticulum as proprotein precursors and then transported to the vacuoles, where they are converted into their respective mature forms by vacuolar processing enzymes (VPEs). In the case of the seed storage proteins, this process is of major importance, as it conditions the establishment of vigorous seedlings. Toward the goal of identifying proteome signatures that could be associated with the origin and early diversification of angiosperms, we previously characterized the 11S-legumin-type seed storage proteins from Amborella trichopoda, a rainforest shrub endemic to New Caledonia that is also the probable sister to all other angiosperms (Amborella Genome Project, 2013). In the present study, proteomic and genomic approaches were used to characterize the VPE family in this species. Three genes were found to encode VPEs in the Amborella's genome. Phylogenetic analyses showed that the Amborella sequences grouped within two major clades of angiosperm VPEs, indicating that the duplication that generated the ancestors of these clades occurred before the most recent common ancestor of living angiosperms. A further important duplication within the VPE family appears to have occurred in common ancestor of the core eudicots, while many more recent duplications have also occurred in specific taxa, including both Arabidopsis thaliana and Amborella. An analysis of natural genetic variation for each of the three Amborella VPE genes revealed the absence of selective forces acting on intronic and exonic single-nucleotide polymorphisms among several natural Amborella populations in New Caledonia.

No MeSH data available.


Related in: MedlinePlus