Limits...
Facile synthesis of biocompatible gold nanoparticles from Vites vinefera and its cellular internalization against HBL-100 cells.

Amarnath K, Mathew NL, Nellore J, Siddarth CR, Kumar J - Cancer Nanotechnol (2011)

Bottom Line: Current discovery demonstrates the rapid formation of gold nanoparticles with the phytochemicals present in grapes, which serve a dual role as synergistic reducing agents to reduce gold salts into gold nanoparticles and also as stabilizers to provide a robust coating on the gold nanoparticles in a single step.In addition, the grape-generated gold nanoparticles (GAuNPs, GSH-GAuNPs, LA-GAuNPs) have demonstrated remarkable affinity towards human breast cancer cells (HBL-100) in the present study.Other than gold salts, no "manmade" chemicals are used in this truly biogenic, green nanotechnological process which thereby paves the way for outstanding opening for their application in molecular imaging and cancer therapy.

View Article: PubMed Central - PubMed

Affiliation: Department of Medical Biochemistry, Dental College & Hospitals, Sathyabama University, Chennai, 600119 Tamil Nadu India.

ABSTRACT

The remarkable health benefits of the chemical cocktails occluded within Vites vinefera (grapes) have been broadly used as dietary supplements and as natural pharmaceuticals in the treatment of various diseases including human cancer. Current discovery demonstrates the rapid formation of gold nanoparticles with the phytochemicals present in grapes, which serve a dual role as synergistic reducing agents to reduce gold salts into gold nanoparticles and also as stabilizers to provide a robust coating on the gold nanoparticles in a single step. Furthermore, the grape-generated gold nanoparticles (GAuNPs), have demonstrated remarkable in vitro stability on specific functionalization with peptides (GSH) and thiol-containing compounds (lipoic acid) followed by the induction of cell-specific response. In addition, the grape-generated gold nanoparticles (GAuNPs, GSH-GAuNPs, LA-GAuNPs) have demonstrated remarkable affinity towards human breast cancer cells (HBL-100) in the present study. These studies thus signified the cellular internalization of GAuNPs and its conjugates by transmission electron microscopy through endocytosis into cancer cells. Notably, at higher concentration of gold nanoparticles conjugate, there was an asymmetric accumulation of gold nanoparticles in the periphery of the cell nucleus of the HBL-100 cells which was confirmed by fluorescence microscopy. Other than gold salts, no "manmade" chemicals are used in this truly biogenic, green nanotechnological process which thereby paves the way for outstanding opening for their application in molecular imaging and cancer therapy.

No MeSH data available.


Related in: MedlinePlus

HBL-100 cells were treated for 24 h with 500 μM untreated cells (lane 1) GAuNPs (lane 2) GSH-GAuNPs (lane 3), and LA-GAuNPs (lane 4) for inter-nucleosomal DNA fragmentation analyzed by electrophoresis on a 1.6% Tris-Borate-EDTA agarose gel electrophoresis
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4544069&req=5

Fig8: HBL-100 cells were treated for 24 h with 500 μM untreated cells (lane 1) GAuNPs (lane 2) GSH-GAuNPs (lane 3), and LA-GAuNPs (lane 4) for inter-nucleosomal DNA fragmentation analyzed by electrophoresis on a 1.6% Tris-Borate-EDTA agarose gel electrophoresis

Mentions: Surface reactivity, chemical composition, and large specific surface area have been deemed important properties in nanoparticle-mediated toxicity (Wallace et al. 2007). HBL-100 cells, after treatment with nanometer-sized GAuNPs, GSH-GAuNPs, and LA-GAuNPs, exhibited ultra structure and biochemical features that are characteristic of apoptosis, as shown by chromatin condensation and inter nucleosomal DNA fragmentation. The phase-contrast microscopic pictures of altered morphology of HBL-100 cells which is characteristic of apoptotic cell stage when treated with GSH-GAuNPs, and LA-GAuNPs (40–80 nm) are shown in Fig. 7a–d. In addition, the nuclear fragmentation, a hallmark of cellular apoptosis, was clearly exhibited by fluorescent microscopic studies after DAPI staining of untreated and GSH-GAuNPs and LA-GAuNPs (40–80 nm)-treated HBL cells (Fig. 8a–d). A minimum of 200 cells were counted and classified as follows: (1) live cells (normal nuclei: blue chromatin with organized structure); (2) stressed cells (bright-blue chromatin, which is highly condensed, margined, or fragmented).Fig. 7


Facile synthesis of biocompatible gold nanoparticles from Vites vinefera and its cellular internalization against HBL-100 cells.

Amarnath K, Mathew NL, Nellore J, Siddarth CR, Kumar J - Cancer Nanotechnol (2011)

HBL-100 cells were treated for 24 h with 500 μM untreated cells (lane 1) GAuNPs (lane 2) GSH-GAuNPs (lane 3), and LA-GAuNPs (lane 4) for inter-nucleosomal DNA fragmentation analyzed by electrophoresis on a 1.6% Tris-Borate-EDTA agarose gel electrophoresis
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4544069&req=5

Fig8: HBL-100 cells were treated for 24 h with 500 μM untreated cells (lane 1) GAuNPs (lane 2) GSH-GAuNPs (lane 3), and LA-GAuNPs (lane 4) for inter-nucleosomal DNA fragmentation analyzed by electrophoresis on a 1.6% Tris-Borate-EDTA agarose gel electrophoresis
Mentions: Surface reactivity, chemical composition, and large specific surface area have been deemed important properties in nanoparticle-mediated toxicity (Wallace et al. 2007). HBL-100 cells, after treatment with nanometer-sized GAuNPs, GSH-GAuNPs, and LA-GAuNPs, exhibited ultra structure and biochemical features that are characteristic of apoptosis, as shown by chromatin condensation and inter nucleosomal DNA fragmentation. The phase-contrast microscopic pictures of altered morphology of HBL-100 cells which is characteristic of apoptotic cell stage when treated with GSH-GAuNPs, and LA-GAuNPs (40–80 nm) are shown in Fig. 7a–d. In addition, the nuclear fragmentation, a hallmark of cellular apoptosis, was clearly exhibited by fluorescent microscopic studies after DAPI staining of untreated and GSH-GAuNPs and LA-GAuNPs (40–80 nm)-treated HBL cells (Fig. 8a–d). A minimum of 200 cells were counted and classified as follows: (1) live cells (normal nuclei: blue chromatin with organized structure); (2) stressed cells (bright-blue chromatin, which is highly condensed, margined, or fragmented).Fig. 7

Bottom Line: Current discovery demonstrates the rapid formation of gold nanoparticles with the phytochemicals present in grapes, which serve a dual role as synergistic reducing agents to reduce gold salts into gold nanoparticles and also as stabilizers to provide a robust coating on the gold nanoparticles in a single step.In addition, the grape-generated gold nanoparticles (GAuNPs, GSH-GAuNPs, LA-GAuNPs) have demonstrated remarkable affinity towards human breast cancer cells (HBL-100) in the present study.Other than gold salts, no "manmade" chemicals are used in this truly biogenic, green nanotechnological process which thereby paves the way for outstanding opening for their application in molecular imaging and cancer therapy.

View Article: PubMed Central - PubMed

Affiliation: Department of Medical Biochemistry, Dental College & Hospitals, Sathyabama University, Chennai, 600119 Tamil Nadu India.

ABSTRACT

The remarkable health benefits of the chemical cocktails occluded within Vites vinefera (grapes) have been broadly used as dietary supplements and as natural pharmaceuticals in the treatment of various diseases including human cancer. Current discovery demonstrates the rapid formation of gold nanoparticles with the phytochemicals present in grapes, which serve a dual role as synergistic reducing agents to reduce gold salts into gold nanoparticles and also as stabilizers to provide a robust coating on the gold nanoparticles in a single step. Furthermore, the grape-generated gold nanoparticles (GAuNPs), have demonstrated remarkable in vitro stability on specific functionalization with peptides (GSH) and thiol-containing compounds (lipoic acid) followed by the induction of cell-specific response. In addition, the grape-generated gold nanoparticles (GAuNPs, GSH-GAuNPs, LA-GAuNPs) have demonstrated remarkable affinity towards human breast cancer cells (HBL-100) in the present study. These studies thus signified the cellular internalization of GAuNPs and its conjugates by transmission electron microscopy through endocytosis into cancer cells. Notably, at higher concentration of gold nanoparticles conjugate, there was an asymmetric accumulation of gold nanoparticles in the periphery of the cell nucleus of the HBL-100 cells which was confirmed by fluorescence microscopy. Other than gold salts, no "manmade" chemicals are used in this truly biogenic, green nanotechnological process which thereby paves the way for outstanding opening for their application in molecular imaging and cancer therapy.

No MeSH data available.


Related in: MedlinePlus