Limits...
Facile synthesis of biocompatible gold nanoparticles from Vites vinefera and its cellular internalization against HBL-100 cells.

Amarnath K, Mathew NL, Nellore J, Siddarth CR, Kumar J - Cancer Nanotechnol (2011)

Bottom Line: Current discovery demonstrates the rapid formation of gold nanoparticles with the phytochemicals present in grapes, which serve a dual role as synergistic reducing agents to reduce gold salts into gold nanoparticles and also as stabilizers to provide a robust coating on the gold nanoparticles in a single step.In addition, the grape-generated gold nanoparticles (GAuNPs, GSH-GAuNPs, LA-GAuNPs) have demonstrated remarkable affinity towards human breast cancer cells (HBL-100) in the present study.Other than gold salts, no "manmade" chemicals are used in this truly biogenic, green nanotechnological process which thereby paves the way for outstanding opening for their application in molecular imaging and cancer therapy.

View Article: PubMed Central - PubMed

Affiliation: Department of Medical Biochemistry, Dental College & Hospitals, Sathyabama University, Chennai, 600119 Tamil Nadu India.

ABSTRACT

The remarkable health benefits of the chemical cocktails occluded within Vites vinefera (grapes) have been broadly used as dietary supplements and as natural pharmaceuticals in the treatment of various diseases including human cancer. Current discovery demonstrates the rapid formation of gold nanoparticles with the phytochemicals present in grapes, which serve a dual role as synergistic reducing agents to reduce gold salts into gold nanoparticles and also as stabilizers to provide a robust coating on the gold nanoparticles in a single step. Furthermore, the grape-generated gold nanoparticles (GAuNPs), have demonstrated remarkable in vitro stability on specific functionalization with peptides (GSH) and thiol-containing compounds (lipoic acid) followed by the induction of cell-specific response. In addition, the grape-generated gold nanoparticles (GAuNPs, GSH-GAuNPs, LA-GAuNPs) have demonstrated remarkable affinity towards human breast cancer cells (HBL-100) in the present study. These studies thus signified the cellular internalization of GAuNPs and its conjugates by transmission electron microscopy through endocytosis into cancer cells. Notably, at higher concentration of gold nanoparticles conjugate, there was an asymmetric accumulation of gold nanoparticles in the periphery of the cell nucleus of the HBL-100 cells which was confirmed by fluorescence microscopy. Other than gold salts, no "manmade" chemicals are used in this truly biogenic, green nanotechnological process which thereby paves the way for outstanding opening for their application in molecular imaging and cancer therapy.

No MeSH data available.


Related in: MedlinePlus

a–d TEM images of HBL-100 cells showing the internalization of GAuNPs depicting the arrival of a GAuNPs at the cells membrane, binding of the nanoparticles to surface receptors, membrane wrapping of the nanoparticles, and finally internalization into the cell nucleus
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4544069&req=5

Fig10: a–d TEM images of HBL-100 cells showing the internalization of GAuNPs depicting the arrival of a GAuNPs at the cells membrane, binding of the nanoparticles to surface receptors, membrane wrapping of the nanoparticles, and finally internalization into the cell nucleus

Mentions: Membrane integrity is another cellular characteristic commonly used to determine viability during in vitro nanotoxicology experiments. Surprisingly, cancer cells are highly metabolic and porous in nature and are known to internalize solutes rapidly compared to normal cells (Sun et al. 2007). Do the cells internalize the particles or do the particles remain bound to the cell membrane? Results of cellular internalization studies of AuNps solutions are keys to provide insights into their use in biomedicine. Their selective cell and nuclear targeting will provide new pathways for their site-specific delivery as diagnostic/therapeutic agents. To address these issues, confocal microscopic studies confirmed the uptake of GSH-GAuNPs and LA-GAuNPs inside the HBL-100 cells (Fig. 10a–c) with the presence of agglomerated gold nanoparticles; a similar observation was also reported by Stark and coworkers with copper nanoparticles for Hela cells (Studer et al. 2010).Fig. 10


Facile synthesis of biocompatible gold nanoparticles from Vites vinefera and its cellular internalization against HBL-100 cells.

Amarnath K, Mathew NL, Nellore J, Siddarth CR, Kumar J - Cancer Nanotechnol (2011)

a–d TEM images of HBL-100 cells showing the internalization of GAuNPs depicting the arrival of a GAuNPs at the cells membrane, binding of the nanoparticles to surface receptors, membrane wrapping of the nanoparticles, and finally internalization into the cell nucleus
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4544069&req=5

Fig10: a–d TEM images of HBL-100 cells showing the internalization of GAuNPs depicting the arrival of a GAuNPs at the cells membrane, binding of the nanoparticles to surface receptors, membrane wrapping of the nanoparticles, and finally internalization into the cell nucleus
Mentions: Membrane integrity is another cellular characteristic commonly used to determine viability during in vitro nanotoxicology experiments. Surprisingly, cancer cells are highly metabolic and porous in nature and are known to internalize solutes rapidly compared to normal cells (Sun et al. 2007). Do the cells internalize the particles or do the particles remain bound to the cell membrane? Results of cellular internalization studies of AuNps solutions are keys to provide insights into their use in biomedicine. Their selective cell and nuclear targeting will provide new pathways for their site-specific delivery as diagnostic/therapeutic agents. To address these issues, confocal microscopic studies confirmed the uptake of GSH-GAuNPs and LA-GAuNPs inside the HBL-100 cells (Fig. 10a–c) with the presence of agglomerated gold nanoparticles; a similar observation was also reported by Stark and coworkers with copper nanoparticles for Hela cells (Studer et al. 2010).Fig. 10

Bottom Line: Current discovery demonstrates the rapid formation of gold nanoparticles with the phytochemicals present in grapes, which serve a dual role as synergistic reducing agents to reduce gold salts into gold nanoparticles and also as stabilizers to provide a robust coating on the gold nanoparticles in a single step.In addition, the grape-generated gold nanoparticles (GAuNPs, GSH-GAuNPs, LA-GAuNPs) have demonstrated remarkable affinity towards human breast cancer cells (HBL-100) in the present study.Other than gold salts, no "manmade" chemicals are used in this truly biogenic, green nanotechnological process which thereby paves the way for outstanding opening for their application in molecular imaging and cancer therapy.

View Article: PubMed Central - PubMed

Affiliation: Department of Medical Biochemistry, Dental College & Hospitals, Sathyabama University, Chennai, 600119 Tamil Nadu India.

ABSTRACT

The remarkable health benefits of the chemical cocktails occluded within Vites vinefera (grapes) have been broadly used as dietary supplements and as natural pharmaceuticals in the treatment of various diseases including human cancer. Current discovery demonstrates the rapid formation of gold nanoparticles with the phytochemicals present in grapes, which serve a dual role as synergistic reducing agents to reduce gold salts into gold nanoparticles and also as stabilizers to provide a robust coating on the gold nanoparticles in a single step. Furthermore, the grape-generated gold nanoparticles (GAuNPs), have demonstrated remarkable in vitro stability on specific functionalization with peptides (GSH) and thiol-containing compounds (lipoic acid) followed by the induction of cell-specific response. In addition, the grape-generated gold nanoparticles (GAuNPs, GSH-GAuNPs, LA-GAuNPs) have demonstrated remarkable affinity towards human breast cancer cells (HBL-100) in the present study. These studies thus signified the cellular internalization of GAuNPs and its conjugates by transmission electron microscopy through endocytosis into cancer cells. Notably, at higher concentration of gold nanoparticles conjugate, there was an asymmetric accumulation of gold nanoparticles in the periphery of the cell nucleus of the HBL-100 cells which was confirmed by fluorescence microscopy. Other than gold salts, no "manmade" chemicals are used in this truly biogenic, green nanotechnological process which thereby paves the way for outstanding opening for their application in molecular imaging and cancer therapy.

No MeSH data available.


Related in: MedlinePlus