Limits...
Body language in the brain: constructing meaning from expressive movement.

Tipper CM, Signorini G, Grafton ST - Front Hum Neurosci (2015)

Bottom Line: A repetition suppression (RS) procedure was used to identify brain regions that decoded the meaningful affective state of a performer, as evidenced by decreased activity when emotive themes were repeated in successive performances.RS was observed bilaterally, extending anteriorly along middle and superior temporal gyri into temporal pole, medially into insula, rostrally into inferior orbitofrontal cortex, and caudally into hippocampus and amygdala.There was greater RS in left hemisphere, suggesting that the more abstract metaphors used to express themes in dance compared to pantomime posed a greater challenge to brain substrates directly involved in decoding those themes.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychiatry, University of British Columbia Vancouver, BC, Canada ; Mental Health and Integrated Neurobehavioral Development Research Core, Child and Family Research Institute Vancouver, BC, Canada.

ABSTRACT
This fMRI study investigated neural systems that interpret body language-the meaningful emotive expressions conveyed by body movement. Participants watched videos of performers engaged in modern dance or pantomime that conveyed specific themes such as hope, agony, lust, or exhaustion. We tested whether the meaning of an affectively laden performance was decoded in localized brain substrates as a distinct property of action separable from other superficial features, such as choreography, kinematics, performer, and low-level visual stimuli. A repetition suppression (RS) procedure was used to identify brain regions that decoded the meaningful affective state of a performer, as evidenced by decreased activity when emotive themes were repeated in successive performances. Because the theme was the only feature repeated across video clips that were otherwise entirely different, the occurrence of RS identified brain substrates that differentially coded the specific meaning of expressive performances. RS was observed bilaterally, extending anteriorly along middle and superior temporal gyri into temporal pole, medially into insula, rostrally into inferior orbitofrontal cortex, and caudally into hippocampus and amygdala. Behavioral data on a separate task indicated that interpreting themes from modern dance was more difficult than interpreting pantomime; a result that was also reflected in the fMRI data. There was greater RS in left hemisphere, suggesting that the more abstract metaphors used to express themes in dance compared to pantomime posed a greater challenge to brain substrates directly involved in decoding those themes. We propose that the meaning-sensitive temporal-orbitofrontal regions observed here comprise a superordinate functional module of a known hierarchical action observation network (AON), which is critical to the construction of meaning from expressive movement. The findings are discussed with respect to a predictive coding model of action understanding.

No MeSH data available.


Related in: MedlinePlus

Regions showing greater RS for dance than pantomime. RS effects were compared between movement types. This was implemented as an interaction contrast within our Movement Type × Repetition ANOVA design [(Novel Dance > Repeated Dance) > (Novel Pantomime > Repeated Pantomime)]. Greater RS for dance was lateralized to left hemisphere meaning-sensitive regions. The brain areas shown here have been linked previously to the comprehension of meaning in verbal language, suggesting the possibility they represent shared brain substrates for building meaning from both language and action. Number labels correspond to those listed in Table 4, which provides anatomical names and voxel coordinates for key clusters showing significantly greater RS for dance. Blue shaded area indicates vertical extent of axial slices shown.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4543892&req=5

Figure 6: Regions showing greater RS for dance than pantomime. RS effects were compared between movement types. This was implemented as an interaction contrast within our Movement Type × Repetition ANOVA design [(Novel Dance > Repeated Dance) > (Novel Pantomime > Repeated Pantomime)]. Greater RS for dance was lateralized to left hemisphere meaning-sensitive regions. The brain areas shown here have been linked previously to the comprehension of meaning in verbal language, suggesting the possibility they represent shared brain substrates for building meaning from both language and action. Number labels correspond to those listed in Table 4, which provides anatomical names and voxel coordinates for key clusters showing significantly greater RS for dance. Blue shaded area indicates vertical extent of axial slices shown.

Mentions: The behavioral analysis indicated that interpreting danced themes was more difficult than interpreting pantomimed themes, as evidenced by lower consistency scores and greater RTs. Previous research indicates that greater difficulty discriminating a particular stimulus dimension is associated with greater BOLD suppression upon repetition of that dimension's attributes (Hasson et al., 2006). To test whether greater difficulty decoding meaning from dance than pantomime would also be associated with greater RS in the present data, the magnitude of BOLD response suppression was compared between movement types. This was done with the Dance × Repetition interaction contrast in the second-level whole brain analysis, which revealed regions that had greater RS for dance than for pantomime. Figure 6 illustrates brain regions showing greater RS for themes portrayed through dance than pantomime (p < 0.05, cluster corrected in FSL). Significant differences were entirely left-lateralized in superior and middle temporal gyri, extending into temporal pole and orbitofrontal cortex, and also present in laterobasal amygdala and the cornu ammonis of the hippocampus. Table 4 presents the MNI coordinates for selected voxels within significant clusters. The reverse Pantomime × Repetition interaction was also tested, but did not reveal any regions showing greater RS for pantomime than dance (p > 0.05, cluster corrected in FSL).


Body language in the brain: constructing meaning from expressive movement.

Tipper CM, Signorini G, Grafton ST - Front Hum Neurosci (2015)

Regions showing greater RS for dance than pantomime. RS effects were compared between movement types. This was implemented as an interaction contrast within our Movement Type × Repetition ANOVA design [(Novel Dance > Repeated Dance) > (Novel Pantomime > Repeated Pantomime)]. Greater RS for dance was lateralized to left hemisphere meaning-sensitive regions. The brain areas shown here have been linked previously to the comprehension of meaning in verbal language, suggesting the possibility they represent shared brain substrates for building meaning from both language and action. Number labels correspond to those listed in Table 4, which provides anatomical names and voxel coordinates for key clusters showing significantly greater RS for dance. Blue shaded area indicates vertical extent of axial slices shown.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4543892&req=5

Figure 6: Regions showing greater RS for dance than pantomime. RS effects were compared between movement types. This was implemented as an interaction contrast within our Movement Type × Repetition ANOVA design [(Novel Dance > Repeated Dance) > (Novel Pantomime > Repeated Pantomime)]. Greater RS for dance was lateralized to left hemisphere meaning-sensitive regions. The brain areas shown here have been linked previously to the comprehension of meaning in verbal language, suggesting the possibility they represent shared brain substrates for building meaning from both language and action. Number labels correspond to those listed in Table 4, which provides anatomical names and voxel coordinates for key clusters showing significantly greater RS for dance. Blue shaded area indicates vertical extent of axial slices shown.
Mentions: The behavioral analysis indicated that interpreting danced themes was more difficult than interpreting pantomimed themes, as evidenced by lower consistency scores and greater RTs. Previous research indicates that greater difficulty discriminating a particular stimulus dimension is associated with greater BOLD suppression upon repetition of that dimension's attributes (Hasson et al., 2006). To test whether greater difficulty decoding meaning from dance than pantomime would also be associated with greater RS in the present data, the magnitude of BOLD response suppression was compared between movement types. This was done with the Dance × Repetition interaction contrast in the second-level whole brain analysis, which revealed regions that had greater RS for dance than for pantomime. Figure 6 illustrates brain regions showing greater RS for themes portrayed through dance than pantomime (p < 0.05, cluster corrected in FSL). Significant differences were entirely left-lateralized in superior and middle temporal gyri, extending into temporal pole and orbitofrontal cortex, and also present in laterobasal amygdala and the cornu ammonis of the hippocampus. Table 4 presents the MNI coordinates for selected voxels within significant clusters. The reverse Pantomime × Repetition interaction was also tested, but did not reveal any regions showing greater RS for pantomime than dance (p > 0.05, cluster corrected in FSL).

Bottom Line: A repetition suppression (RS) procedure was used to identify brain regions that decoded the meaningful affective state of a performer, as evidenced by decreased activity when emotive themes were repeated in successive performances.RS was observed bilaterally, extending anteriorly along middle and superior temporal gyri into temporal pole, medially into insula, rostrally into inferior orbitofrontal cortex, and caudally into hippocampus and amygdala.There was greater RS in left hemisphere, suggesting that the more abstract metaphors used to express themes in dance compared to pantomime posed a greater challenge to brain substrates directly involved in decoding those themes.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychiatry, University of British Columbia Vancouver, BC, Canada ; Mental Health and Integrated Neurobehavioral Development Research Core, Child and Family Research Institute Vancouver, BC, Canada.

ABSTRACT
This fMRI study investigated neural systems that interpret body language-the meaningful emotive expressions conveyed by body movement. Participants watched videos of performers engaged in modern dance or pantomime that conveyed specific themes such as hope, agony, lust, or exhaustion. We tested whether the meaning of an affectively laden performance was decoded in localized brain substrates as a distinct property of action separable from other superficial features, such as choreography, kinematics, performer, and low-level visual stimuli. A repetition suppression (RS) procedure was used to identify brain regions that decoded the meaningful affective state of a performer, as evidenced by decreased activity when emotive themes were repeated in successive performances. Because the theme was the only feature repeated across video clips that were otherwise entirely different, the occurrence of RS identified brain substrates that differentially coded the specific meaning of expressive performances. RS was observed bilaterally, extending anteriorly along middle and superior temporal gyri into temporal pole, medially into insula, rostrally into inferior orbitofrontal cortex, and caudally into hippocampus and amygdala. Behavioral data on a separate task indicated that interpreting themes from modern dance was more difficult than interpreting pantomime; a result that was also reflected in the fMRI data. There was greater RS in left hemisphere, suggesting that the more abstract metaphors used to express themes in dance compared to pantomime posed a greater challenge to brain substrates directly involved in decoding those themes. We propose that the meaning-sensitive temporal-orbitofrontal regions observed here comprise a superordinate functional module of a known hierarchical action observation network (AON), which is critical to the construction of meaning from expressive movement. The findings are discussed with respect to a predictive coding model of action understanding.

No MeSH data available.


Related in: MedlinePlus