Limits...
Body language in the brain: constructing meaning from expressive movement.

Tipper CM, Signorini G, Grafton ST - Front Hum Neurosci (2015)

Bottom Line: A repetition suppression (RS) procedure was used to identify brain regions that decoded the meaningful affective state of a performer, as evidenced by decreased activity when emotive themes were repeated in successive performances.RS was observed bilaterally, extending anteriorly along middle and superior temporal gyri into temporal pole, medially into insula, rostrally into inferior orbitofrontal cortex, and caudally into hippocampus and amygdala.There was greater RS in left hemisphere, suggesting that the more abstract metaphors used to express themes in dance compared to pantomime posed a greater challenge to brain substrates directly involved in decoding those themes.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychiatry, University of British Columbia Vancouver, BC, Canada ; Mental Health and Integrated Neurobehavioral Development Research Core, Child and Family Research Institute Vancouver, BC, Canada.

ABSTRACT
This fMRI study investigated neural systems that interpret body language-the meaningful emotive expressions conveyed by body movement. Participants watched videos of performers engaged in modern dance or pantomime that conveyed specific themes such as hope, agony, lust, or exhaustion. We tested whether the meaning of an affectively laden performance was decoded in localized brain substrates as a distinct property of action separable from other superficial features, such as choreography, kinematics, performer, and low-level visual stimuli. A repetition suppression (RS) procedure was used to identify brain regions that decoded the meaningful affective state of a performer, as evidenced by decreased activity when emotive themes were repeated in successive performances. Because the theme was the only feature repeated across video clips that were otherwise entirely different, the occurrence of RS identified brain substrates that differentially coded the specific meaning of expressive performances. RS was observed bilaterally, extending anteriorly along middle and superior temporal gyri into temporal pole, medially into insula, rostrally into inferior orbitofrontal cortex, and caudally into hippocampus and amygdala. Behavioral data on a separate task indicated that interpreting themes from modern dance was more difficult than interpreting pantomime; a result that was also reflected in the fMRI data. There was greater RS in left hemisphere, suggesting that the more abstract metaphors used to express themes in dance compared to pantomime posed a greater challenge to brain substrates directly involved in decoding those themes. We propose that the meaning-sensitive temporal-orbitofrontal regions observed here comprise a superordinate functional module of a known hierarchical action observation network (AON), which is critical to the construction of meaning from expressive movement. The findings are discussed with respect to a predictive coding model of action understanding.

No MeSH data available.


Related in: MedlinePlus

Expressive performances engage the action observation network. Viewing expressive whole-body movement sequences engaged a distributed cortical action observation network (p < 0.05, FWE corrected). Large areas of parietal, temporal, frontal, and insular cortex included somatosensory, motor, and premotor regions that have been considered previously to comprise a human “mirror neuron” system, as well as non-motor areas linked to comprehension, social perception, and affective decision-making. Number labels correspond to those listed in Table 2, which provides anatomical names and voxel coordinates for areas of peak activation. Dotted line for regions 17/18 indicates medial temporal position not visible on the cortical surface.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4543892&req=5

Figure 4: Expressive performances engage the action observation network. Viewing expressive whole-body movement sequences engaged a distributed cortical action observation network (p < 0.05, FWE corrected). Large areas of parietal, temporal, frontal, and insular cortex included somatosensory, motor, and premotor regions that have been considered previously to comprise a human “mirror neuron” system, as well as non-motor areas linked to comprehension, social perception, and affective decision-making. Number labels correspond to those listed in Table 2, which provides anatomical names and voxel coordinates for areas of peak activation. Dotted line for regions 17/18 indicates medial temporal position not visible on the cortical surface.

Mentions: Brain activity associated with the observation of expressive movement sequences was revealed by significant BOLD responses to observing both dance and pantomime movement sequences, relative to the inter-trial resting baseline. Figure 4 depicts significant activation (p < 0.05, cluster corrected in FSL) rendered on an inflated cortical surface of the Human PALS-B12 Atlas (Van Essen, 2005) using Caret (Version 5. 61; http://www.nitrc.org/projects/caret; Van Essen et al., 2001). Table 2 presents the MNI coordinates for selected voxels within clusters active during movement observation, as labeled in Figure 4. Region names were obtained from the Harvard-Oxford Cortical and Subcortical Structural Atlases (Frazier et al., 2005; Desikan et al., 2006; Makris et al., 2006; Goldstein et al., 2007; Harvard Center for Morphometric Analysis; www.partners.org/researchcores/imaging/morphology_MGH.asp), and Brodmann Area labels were obtained from the Juelich Histological Atlas (Eickhoff et al., 2005, 2006, 2007), as implemented in FSL. Observation of body movement was associated with robust BOLD activation encompassing cortex typically associated with the AON, including fronto-parietal regions linked to the representation of action kinematics, goals, and outcomes (Hamilton and Grafton, 2006, 2007), as well as temporal, occipital, and insular cortex and subcortical regions including amygdala and hippocampus—regions typically associated with language comprehension (Kirchhoff et al., 2000; Ni et al., 2000; Friederici et al., 2003) and socio-affective information processing and decision-making (Anderson et al., 1999; Adolphs et al., 2003; Bechara et al., 2003; Bechara and Damasio, 2005).


Body language in the brain: constructing meaning from expressive movement.

Tipper CM, Signorini G, Grafton ST - Front Hum Neurosci (2015)

Expressive performances engage the action observation network. Viewing expressive whole-body movement sequences engaged a distributed cortical action observation network (p < 0.05, FWE corrected). Large areas of parietal, temporal, frontal, and insular cortex included somatosensory, motor, and premotor regions that have been considered previously to comprise a human “mirror neuron” system, as well as non-motor areas linked to comprehension, social perception, and affective decision-making. Number labels correspond to those listed in Table 2, which provides anatomical names and voxel coordinates for areas of peak activation. Dotted line for regions 17/18 indicates medial temporal position not visible on the cortical surface.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4543892&req=5

Figure 4: Expressive performances engage the action observation network. Viewing expressive whole-body movement sequences engaged a distributed cortical action observation network (p < 0.05, FWE corrected). Large areas of parietal, temporal, frontal, and insular cortex included somatosensory, motor, and premotor regions that have been considered previously to comprise a human “mirror neuron” system, as well as non-motor areas linked to comprehension, social perception, and affective decision-making. Number labels correspond to those listed in Table 2, which provides anatomical names and voxel coordinates for areas of peak activation. Dotted line for regions 17/18 indicates medial temporal position not visible on the cortical surface.
Mentions: Brain activity associated with the observation of expressive movement sequences was revealed by significant BOLD responses to observing both dance and pantomime movement sequences, relative to the inter-trial resting baseline. Figure 4 depicts significant activation (p < 0.05, cluster corrected in FSL) rendered on an inflated cortical surface of the Human PALS-B12 Atlas (Van Essen, 2005) using Caret (Version 5. 61; http://www.nitrc.org/projects/caret; Van Essen et al., 2001). Table 2 presents the MNI coordinates for selected voxels within clusters active during movement observation, as labeled in Figure 4. Region names were obtained from the Harvard-Oxford Cortical and Subcortical Structural Atlases (Frazier et al., 2005; Desikan et al., 2006; Makris et al., 2006; Goldstein et al., 2007; Harvard Center for Morphometric Analysis; www.partners.org/researchcores/imaging/morphology_MGH.asp), and Brodmann Area labels were obtained from the Juelich Histological Atlas (Eickhoff et al., 2005, 2006, 2007), as implemented in FSL. Observation of body movement was associated with robust BOLD activation encompassing cortex typically associated with the AON, including fronto-parietal regions linked to the representation of action kinematics, goals, and outcomes (Hamilton and Grafton, 2006, 2007), as well as temporal, occipital, and insular cortex and subcortical regions including amygdala and hippocampus—regions typically associated with language comprehension (Kirchhoff et al., 2000; Ni et al., 2000; Friederici et al., 2003) and socio-affective information processing and decision-making (Anderson et al., 1999; Adolphs et al., 2003; Bechara et al., 2003; Bechara and Damasio, 2005).

Bottom Line: A repetition suppression (RS) procedure was used to identify brain regions that decoded the meaningful affective state of a performer, as evidenced by decreased activity when emotive themes were repeated in successive performances.RS was observed bilaterally, extending anteriorly along middle and superior temporal gyri into temporal pole, medially into insula, rostrally into inferior orbitofrontal cortex, and caudally into hippocampus and amygdala.There was greater RS in left hemisphere, suggesting that the more abstract metaphors used to express themes in dance compared to pantomime posed a greater challenge to brain substrates directly involved in decoding those themes.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychiatry, University of British Columbia Vancouver, BC, Canada ; Mental Health and Integrated Neurobehavioral Development Research Core, Child and Family Research Institute Vancouver, BC, Canada.

ABSTRACT
This fMRI study investigated neural systems that interpret body language-the meaningful emotive expressions conveyed by body movement. Participants watched videos of performers engaged in modern dance or pantomime that conveyed specific themes such as hope, agony, lust, or exhaustion. We tested whether the meaning of an affectively laden performance was decoded in localized brain substrates as a distinct property of action separable from other superficial features, such as choreography, kinematics, performer, and low-level visual stimuli. A repetition suppression (RS) procedure was used to identify brain regions that decoded the meaningful affective state of a performer, as evidenced by decreased activity when emotive themes were repeated in successive performances. Because the theme was the only feature repeated across video clips that were otherwise entirely different, the occurrence of RS identified brain substrates that differentially coded the specific meaning of expressive performances. RS was observed bilaterally, extending anteriorly along middle and superior temporal gyri into temporal pole, medially into insula, rostrally into inferior orbitofrontal cortex, and caudally into hippocampus and amygdala. Behavioral data on a separate task indicated that interpreting themes from modern dance was more difficult than interpreting pantomime; a result that was also reflected in the fMRI data. There was greater RS in left hemisphere, suggesting that the more abstract metaphors used to express themes in dance compared to pantomime posed a greater challenge to brain substrates directly involved in decoding those themes. We propose that the meaning-sensitive temporal-orbitofrontal regions observed here comprise a superordinate functional module of a known hierarchical action observation network (AON), which is critical to the construction of meaning from expressive movement. The findings are discussed with respect to a predictive coding model of action understanding.

No MeSH data available.


Related in: MedlinePlus