Limits...
The perception of time while perceiving dynamic emotional faces.

Li WO, Yuen KS - Front Psychol (2015)

Bottom Line: This effect can hardly be explained by induced emotion given the heterogeneous nature of emotional expressions.In addition, dynamic facial expressions exert a greater effect on perceived time drag than static expressions.The effect is most prominent when the dynamics involve an angry face or a change in valence.

View Article: PubMed Central - PubMed

Affiliation: Department of Counselling and Psychology, Hong Kong Shue Yan University Braemar Hill, Hong Kong, China.

ABSTRACT
Emotion plays an essential role in the perception of time such that time is perceived to "fly" when events are enjoyable, while unenjoyable moments are perceived to "drag." Previous studies have reported a time-drag effect when participants are presented with emotional facial expressions, regardless of the emotion presented. This effect can hardly be explained by induced emotion given the heterogeneous nature of emotional expressions. We conducted two experiments (n = 44 and n = 39) to examine the cognitive mechanism underlying this effect by presenting dynamic sequences of emotional expressions to participants. Each sequence started with a particular expression, then morphed to another. The presentation of dynamic facial expressions allows a comparison between the time-drag effect of homogeneous pairs of emotional expressions sharing similar valence and arousal to heterogeneous pairs. Sequences of seven durations (400, 600, 800, 1000, 1200, 1400, 1600 ms) were presented to participants, who were asked to judge whether the sequences were closer to 400 or 1600 ms in a two-alternative forced choice task. The data were then collated according to conditions and fit into cumulative Gaussian curves to estimate the point of subjective equivalence indicating the perceived duration of 1000 ms. Consistent with previous reports, a feeling of "time dragging" is induced regardless of the sequence presented, such that 1000 ms is perceived to be longer than 1000 ms. In addition, dynamic facial expressions exert a greater effect on perceived time drag than static expressions. The effect is most prominent when the dynamics involve an angry face or a change in valence. The significance of this sensitivity is discussed in terms of emotion perception and its evolutionary significance for our attention mechanism.

No MeSH data available.


Related in: MedlinePlus

Illustration of two sets of morphing sequence for a 400 ms stimulus. The upper panel is a morph from a neutral to a happy expression of our female model (a morphing sample from Experiment 1). The lower panel is a morph from disgust to anger of our male model (a morphing sample from Experiment 2).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4543824&req=5

Figure 1: Illustration of two sets of morphing sequence for a 400 ms stimulus. The upper panel is a morph from a neutral to a happy expression of our female model (a morphing sample from Experiment 1). The lower panel is a morph from disgust to anger of our male model (a morphing sample from Experiment 2).

Mentions: The photographs were morphed from the neutral expression to one of the three emotional expressions using MagicMorph provided by Etinysoft (http://www.effectmatrix.com/morphing/). Grayscale versions of the photographs were chosen to minimize any observable image blur during the morphing process. There were 50 frames in the morphing sequence; 48 frames were produced in between the two original images. The number of frames depended on the duration of the stimulus: each frame presented for 40 ms with DirectRT. For example, a 1000 ms stimulus presented 25 frames evenly distributed in the morphing sequence (i.e., all the odd number frames starting from 1st to 41st, then 44th, 46th, 48th, and 50th frames), each presented for 40 ms. Figure 1 shows two of the shortest sequences with 10 frames for a duration of 400 ms (1st, 6th, 12th, 18th, 23rd, 29th, 35th, 40th, 45th, and 50th frames). Sample stimuli are uploaded as Supplementary Materials.


The perception of time while perceiving dynamic emotional faces.

Li WO, Yuen KS - Front Psychol (2015)

Illustration of two sets of morphing sequence for a 400 ms stimulus. The upper panel is a morph from a neutral to a happy expression of our female model (a morphing sample from Experiment 1). The lower panel is a morph from disgust to anger of our male model (a morphing sample from Experiment 2).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4543824&req=5

Figure 1: Illustration of two sets of morphing sequence for a 400 ms stimulus. The upper panel is a morph from a neutral to a happy expression of our female model (a morphing sample from Experiment 1). The lower panel is a morph from disgust to anger of our male model (a morphing sample from Experiment 2).
Mentions: The photographs were morphed from the neutral expression to one of the three emotional expressions using MagicMorph provided by Etinysoft (http://www.effectmatrix.com/morphing/). Grayscale versions of the photographs were chosen to minimize any observable image blur during the morphing process. There were 50 frames in the morphing sequence; 48 frames were produced in between the two original images. The number of frames depended on the duration of the stimulus: each frame presented for 40 ms with DirectRT. For example, a 1000 ms stimulus presented 25 frames evenly distributed in the morphing sequence (i.e., all the odd number frames starting from 1st to 41st, then 44th, 46th, 48th, and 50th frames), each presented for 40 ms. Figure 1 shows two of the shortest sequences with 10 frames for a duration of 400 ms (1st, 6th, 12th, 18th, 23rd, 29th, 35th, 40th, 45th, and 50th frames). Sample stimuli are uploaded as Supplementary Materials.

Bottom Line: This effect can hardly be explained by induced emotion given the heterogeneous nature of emotional expressions.In addition, dynamic facial expressions exert a greater effect on perceived time drag than static expressions.The effect is most prominent when the dynamics involve an angry face or a change in valence.

View Article: PubMed Central - PubMed

Affiliation: Department of Counselling and Psychology, Hong Kong Shue Yan University Braemar Hill, Hong Kong, China.

ABSTRACT
Emotion plays an essential role in the perception of time such that time is perceived to "fly" when events are enjoyable, while unenjoyable moments are perceived to "drag." Previous studies have reported a time-drag effect when participants are presented with emotional facial expressions, regardless of the emotion presented. This effect can hardly be explained by induced emotion given the heterogeneous nature of emotional expressions. We conducted two experiments (n = 44 and n = 39) to examine the cognitive mechanism underlying this effect by presenting dynamic sequences of emotional expressions to participants. Each sequence started with a particular expression, then morphed to another. The presentation of dynamic facial expressions allows a comparison between the time-drag effect of homogeneous pairs of emotional expressions sharing similar valence and arousal to heterogeneous pairs. Sequences of seven durations (400, 600, 800, 1000, 1200, 1400, 1600 ms) were presented to participants, who were asked to judge whether the sequences were closer to 400 or 1600 ms in a two-alternative forced choice task. The data were then collated according to conditions and fit into cumulative Gaussian curves to estimate the point of subjective equivalence indicating the perceived duration of 1000 ms. Consistent with previous reports, a feeling of "time dragging" is induced regardless of the sequence presented, such that 1000 ms is perceived to be longer than 1000 ms. In addition, dynamic facial expressions exert a greater effect on perceived time drag than static expressions. The effect is most prominent when the dynamics involve an angry face or a change in valence. The significance of this sensitivity is discussed in terms of emotion perception and its evolutionary significance for our attention mechanism.

No MeSH data available.


Related in: MedlinePlus