Limits...
Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice.

Demyanenko IA, Popova EN, Zakharova VV, Ilyinskaya OP, Vasilieva TV, Romashchenko VP, Fedorov AV, Manskikh VN, Skulachev MV, Zinovkin RA, Pletjushkina OY, Skulachev VP, Chernyak BV - Aging (Albany NY) (2015)

Bottom Line: This effect resembled SkQ1-induced differentiation of fibroblasts to myofibroblast, observed earlierin vitro.The Transforming Growth Factor beta (TGFb) produced by SkQ1-treated fibroblasts was found to stimulated motility of endothelial cells in vitro, an effect which may underlie pro-angiogenic action of SkQ1 in the wounds.Prevention of excessive reaction of endothelium to the pro-inflammatory cytokine(s) might account for anti-inflammatory effect of SkQ1.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.

ABSTRACT
The process of skin wound healing is delayed or impaired in aging animals. To investigate the possible role of mitochondrial reactive oxygen species (mtROS) in cutaneous wound healing of aged mice, we have applied the mitochondria-targeted antioxidant SkQ1. The SkQ1 treatment resulted in accelerated resolution of the inflammatory phase, formation of granulation tissue, vascularization and epithelization of the wounds. The wounds of SkQ1-treated mice contained increased amount of myofibroblasts which produce extracellular matrix proteins and growth factors mediating granulation tissue formation. This effect resembled SkQ1-induced differentiation of fibroblasts to myofibroblast, observed earlierin vitro. The Transforming Growth Factor beta (TGFb) produced by SkQ1-treated fibroblasts was found to stimulated motility of endothelial cells in vitro, an effect which may underlie pro-angiogenic action of SkQ1 in the wounds. In vitro experiments showed that SkQ1 prevented decomposition of VE-cadherin containing contacts and following increase in permeability of endothelial cells monolayer, induced by pro-inflammatory cytokine TNF. Prevention of excessive reaction of endothelium to the pro-inflammatory cytokine(s) might account for anti-inflammatory effect of SkQ1. Our findings point to an important role of mtROS in pathogenesis of age-related chronic wounds.

No MeSH data available.


Related in: MedlinePlus

Effect of SkQ1 on endothelial EA.hy926 cell tubular structures formation on MatrigelThe effect of 20 nM SkQ1, and conditioned medium (c.m.) from fibroblasts treated with 20 nM SkQ1. (a) Representative micrograph of matrigel angiogenesis assay; bar, 60 μm; (b-e) analysis of tube formation. Data are presented as mean ± SEM; N=5;*P < 0.05 **P < 0.001 for c.m. from SkQ1-treated versus untreated fibroblasts.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4543037&req=5

Figure 8: Effect of SkQ1 on endothelial EA.hy926 cell tubular structures formation on MatrigelThe effect of 20 nM SkQ1, and conditioned medium (c.m.) from fibroblasts treated with 20 nM SkQ1. (a) Representative micrograph of matrigel angiogenesis assay; bar, 60 μm; (b-e) analysis of tube formation. Data are presented as mean ± SEM; N=5;*P < 0.05 **P < 0.001 for c.m. from SkQ1-treated versus untreated fibroblasts.

Mentions: The volume density of microvessels in the granulation tissue of old mice was lower than in young animals indicating the delay in neovascularization. Treatment with SkQ1 increased the vessel content up to the normal value (Fig. 6). In vitro scratch-wound migration assay with endothelial EA.hy926 cells demonstrated that SkQ1 did not stimulate migration of endothelial cells, but the medium conditioned with SkQ1-treated human subcutaneous fibroblasts enhanced endothelial cells migration compared to the medium conditioned with untreated fibroblasts (Fig. 7). Earlier we have found that SkQ1 stimulated production of active TGFβ by fibroblasts [31], so we have tested the role of this cytokine in the effect of the conditioned medium. Inhibition of TGFβ receptor I by the specific inhibitor (TGFβR1 inhibitor II) partially prevented stimulation of cell migration by the conditioned medium (Fig. 7b). Angiogenesis also could be promoted by VEGF and other molecules produced by myofibroblasts, e.g. soluble mediators and/or microparticle's components [37]. The data of scratch-wound assay were consistent with the results of the endothelial cell tube formation assay. In a medium, containing reduced amount of growth factors (2% FBS) EA.hy926 cells did not form tubular structures on the surface of Matrigel and SkQ1 did not stimulate this process. At the same time, the conditioned medium from SkQ1-treated human subcutaneous fibroblasts stimulated migration-dependent processes, such as tubulogenesis, capillary growth, and sprouting (Fig. 8).


Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice.

Demyanenko IA, Popova EN, Zakharova VV, Ilyinskaya OP, Vasilieva TV, Romashchenko VP, Fedorov AV, Manskikh VN, Skulachev MV, Zinovkin RA, Pletjushkina OY, Skulachev VP, Chernyak BV - Aging (Albany NY) (2015)

Effect of SkQ1 on endothelial EA.hy926 cell tubular structures formation on MatrigelThe effect of 20 nM SkQ1, and conditioned medium (c.m.) from fibroblasts treated with 20 nM SkQ1. (a) Representative micrograph of matrigel angiogenesis assay; bar, 60 μm; (b-e) analysis of tube formation. Data are presented as mean ± SEM; N=5;*P < 0.05 **P < 0.001 for c.m. from SkQ1-treated versus untreated fibroblasts.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4543037&req=5

Figure 8: Effect of SkQ1 on endothelial EA.hy926 cell tubular structures formation on MatrigelThe effect of 20 nM SkQ1, and conditioned medium (c.m.) from fibroblasts treated with 20 nM SkQ1. (a) Representative micrograph of matrigel angiogenesis assay; bar, 60 μm; (b-e) analysis of tube formation. Data are presented as mean ± SEM; N=5;*P < 0.05 **P < 0.001 for c.m. from SkQ1-treated versus untreated fibroblasts.
Mentions: The volume density of microvessels in the granulation tissue of old mice was lower than in young animals indicating the delay in neovascularization. Treatment with SkQ1 increased the vessel content up to the normal value (Fig. 6). In vitro scratch-wound migration assay with endothelial EA.hy926 cells demonstrated that SkQ1 did not stimulate migration of endothelial cells, but the medium conditioned with SkQ1-treated human subcutaneous fibroblasts enhanced endothelial cells migration compared to the medium conditioned with untreated fibroblasts (Fig. 7). Earlier we have found that SkQ1 stimulated production of active TGFβ by fibroblasts [31], so we have tested the role of this cytokine in the effect of the conditioned medium. Inhibition of TGFβ receptor I by the specific inhibitor (TGFβR1 inhibitor II) partially prevented stimulation of cell migration by the conditioned medium (Fig. 7b). Angiogenesis also could be promoted by VEGF and other molecules produced by myofibroblasts, e.g. soluble mediators and/or microparticle's components [37]. The data of scratch-wound assay were consistent with the results of the endothelial cell tube formation assay. In a medium, containing reduced amount of growth factors (2% FBS) EA.hy926 cells did not form tubular structures on the surface of Matrigel and SkQ1 did not stimulate this process. At the same time, the conditioned medium from SkQ1-treated human subcutaneous fibroblasts stimulated migration-dependent processes, such as tubulogenesis, capillary growth, and sprouting (Fig. 8).

Bottom Line: This effect resembled SkQ1-induced differentiation of fibroblasts to myofibroblast, observed earlierin vitro.The Transforming Growth Factor beta (TGFb) produced by SkQ1-treated fibroblasts was found to stimulated motility of endothelial cells in vitro, an effect which may underlie pro-angiogenic action of SkQ1 in the wounds.Prevention of excessive reaction of endothelium to the pro-inflammatory cytokine(s) might account for anti-inflammatory effect of SkQ1.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.

ABSTRACT
The process of skin wound healing is delayed or impaired in aging animals. To investigate the possible role of mitochondrial reactive oxygen species (mtROS) in cutaneous wound healing of aged mice, we have applied the mitochondria-targeted antioxidant SkQ1. The SkQ1 treatment resulted in accelerated resolution of the inflammatory phase, formation of granulation tissue, vascularization and epithelization of the wounds. The wounds of SkQ1-treated mice contained increased amount of myofibroblasts which produce extracellular matrix proteins and growth factors mediating granulation tissue formation. This effect resembled SkQ1-induced differentiation of fibroblasts to myofibroblast, observed earlierin vitro. The Transforming Growth Factor beta (TGFb) produced by SkQ1-treated fibroblasts was found to stimulated motility of endothelial cells in vitro, an effect which may underlie pro-angiogenic action of SkQ1 in the wounds. In vitro experiments showed that SkQ1 prevented decomposition of VE-cadherin containing contacts and following increase in permeability of endothelial cells monolayer, induced by pro-inflammatory cytokine TNF. Prevention of excessive reaction of endothelium to the pro-inflammatory cytokine(s) might account for anti-inflammatory effect of SkQ1. Our findings point to an important role of mtROS in pathogenesis of age-related chronic wounds.

No MeSH data available.


Related in: MedlinePlus