Limits...
A Magnetic Wormhole.

Prat-Camps J, Navau C, Sanchez A - Sci Rep (2015)

Bottom Line: Here we construct and experimentally demonstrate a magnetostatic wormhole.Using magnetic metamaterials and metasurfaces, our wormhole transfers the magnetic field from one point in space to another through a path that is magnetically undetectable.Practical applications of the results can be envisaged, including medical techniques based on magnetism.

View Article: PubMed Central - PubMed

Affiliation: Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain.

ABSTRACT
Wormholes are fascinating cosmological objects that can connect two distant regions of the universe. Because of their intriguing nature, constructing a wormhole in a lab seems a formidable task. A theoretical proposal by Greenleaf et al. presented a strategy to build a wormhole for electromagnetic waves. Based on metamaterials, it could allow electromagnetic wave propagation between two points in space through an invisible tunnel. However, an actual realization has not been possible until now. Here we construct and experimentally demonstrate a magnetostatic wormhole. Using magnetic metamaterials and metasurfaces, our wormhole transfers the magnetic field from one point in space to another through a path that is magnetically undetectable. We experimentally show that the magnetic field from a source at one end of the wormhole appears at the other end as an isolated magnetic monopolar field, creating the illusion of a magnetic field propagating through a tunnel outside the 3D space. Practical applications of the results can be envisaged, including medical techniques based on magnetism.

No MeSH data available.


Related in: MedlinePlus

(a) The field of a magnetic source (right) is appearing as an isolated magnetic monopole when passing through the magnetostatic wormhole; the whole spherical device is magnetically undetectable. (b) The wormhole is composed of (from left to right) an outer spherical ferromagnetic metasurface, a spherical superconducting layer, and an inner spirally wound ferromagnetic sheet.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4542659&req=5

f1: (a) The field of a magnetic source (right) is appearing as an isolated magnetic monopole when passing through the magnetostatic wormhole; the whole spherical device is magnetically undetectable. (b) The wormhole is composed of (from left to right) an outer spherical ferromagnetic metasurface, a spherical superconducting layer, and an inner spirally wound ferromagnetic sheet.

Mentions: The magnetostatic wormhole requires constructing a tunnel for magnetic fields acting as if was outside the usual 3D space. The first property to be satisfied is to magnetically decouple a given volume from the surrounding 3D space. The volume enclosed by a superconducting shell has this property19; we consider here a spherical superconducting shell (Fig. 1b, center). A second property is that the whole resulting wormhole cannot be magnetically detectable from its exterior. The superconducting spherical shell would distort an applied field, and thus be detectable. In Ref. 21, a cylindrical magnetic cloak was made consisting of a superconducting layer surrounded by a magnetic layer; similar bilayer structures have been recently applied to thermal and diffusive cloaks152627. However, the magnetic bilayer was actually 2D - a long cylinder- and was shown to cloak only uniform applied magnetic fields. Realizing an actual magnetic wormhole requires it to be fully 3D and undetectable also for non-uniform fields. To solve this challenge we demonstrate (see Supplementary Information) that a spherical bilayer composed of a superconducting layer of outer radius R2 surrounded by a ferromagnetic layer of outer radius R3 exactly cloaks a uniform applied magnetic field if the permeability of the ferromagnetic layer is


A Magnetic Wormhole.

Prat-Camps J, Navau C, Sanchez A - Sci Rep (2015)

(a) The field of a magnetic source (right) is appearing as an isolated magnetic monopole when passing through the magnetostatic wormhole; the whole spherical device is magnetically undetectable. (b) The wormhole is composed of (from left to right) an outer spherical ferromagnetic metasurface, a spherical superconducting layer, and an inner spirally wound ferromagnetic sheet.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4542659&req=5

f1: (a) The field of a magnetic source (right) is appearing as an isolated magnetic monopole when passing through the magnetostatic wormhole; the whole spherical device is magnetically undetectable. (b) The wormhole is composed of (from left to right) an outer spherical ferromagnetic metasurface, a spherical superconducting layer, and an inner spirally wound ferromagnetic sheet.
Mentions: The magnetostatic wormhole requires constructing a tunnel for magnetic fields acting as if was outside the usual 3D space. The first property to be satisfied is to magnetically decouple a given volume from the surrounding 3D space. The volume enclosed by a superconducting shell has this property19; we consider here a spherical superconducting shell (Fig. 1b, center). A second property is that the whole resulting wormhole cannot be magnetically detectable from its exterior. The superconducting spherical shell would distort an applied field, and thus be detectable. In Ref. 21, a cylindrical magnetic cloak was made consisting of a superconducting layer surrounded by a magnetic layer; similar bilayer structures have been recently applied to thermal and diffusive cloaks152627. However, the magnetic bilayer was actually 2D - a long cylinder- and was shown to cloak only uniform applied magnetic fields. Realizing an actual magnetic wormhole requires it to be fully 3D and undetectable also for non-uniform fields. To solve this challenge we demonstrate (see Supplementary Information) that a spherical bilayer composed of a superconducting layer of outer radius R2 surrounded by a ferromagnetic layer of outer radius R3 exactly cloaks a uniform applied magnetic field if the permeability of the ferromagnetic layer is

Bottom Line: Here we construct and experimentally demonstrate a magnetostatic wormhole.Using magnetic metamaterials and metasurfaces, our wormhole transfers the magnetic field from one point in space to another through a path that is magnetically undetectable.Practical applications of the results can be envisaged, including medical techniques based on magnetism.

View Article: PubMed Central - PubMed

Affiliation: Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain.

ABSTRACT
Wormholes are fascinating cosmological objects that can connect two distant regions of the universe. Because of their intriguing nature, constructing a wormhole in a lab seems a formidable task. A theoretical proposal by Greenleaf et al. presented a strategy to build a wormhole for electromagnetic waves. Based on metamaterials, it could allow electromagnetic wave propagation between two points in space through an invisible tunnel. However, an actual realization has not been possible until now. Here we construct and experimentally demonstrate a magnetostatic wormhole. Using magnetic metamaterials and metasurfaces, our wormhole transfers the magnetic field from one point in space to another through a path that is magnetically undetectable. We experimentally show that the magnetic field from a source at one end of the wormhole appears at the other end as an isolated magnetic monopolar field, creating the illusion of a magnetic field propagating through a tunnel outside the 3D space. Practical applications of the results can be envisaged, including medical techniques based on magnetism.

No MeSH data available.


Related in: MedlinePlus