Limits...
Association of electrospinning with electrospraying: a strategy to produce 3D scaffolds with incorporated stem cells for use in tissue engineering.

Braghirolli DI, Zamboni F, Acasigua GA, Pranke P - Int J Nanomedicine (2015)

Bottom Line: Histological analysis of the SCCs after 1 day of cultivation showed that the cells were uniformly distributed throughout the thickness of the scaffolds.SCCs exhibited good mechanical properties, compatible with their handling and further implantation.The results obtained in the present study suggest that the association of electrospinning and bioelectrospraying provides an interesting tool for forming 3D cell-integrated scaffolds, making it a viable alternative for use in tissue engineering.

View Article: PubMed Central - PubMed

Affiliation: Hematology and Stem Cells Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil ; Department of Materials Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.

ABSTRACT
In tissue engineering, a uniform cell occupation of scaffolds is crucial to ensure the success of tissue regeneration. However, this point remains an unsolved problem in 3D scaffolds. In this study, a direct method to integrate cells into fiber scaffolds was investigated by combining the methods of electrospinning of fibers and bioelectrospraying of cells. With the associating of these methods, the cells were incorporated into the 3D scaffolds while the fibers were being produced. The scaffolds containing cells (SCCs) were produced using 20% poly(lactide-co-glycolide) solution for electrospinning and mesenchymal stem cells from deciduous teeth as a suspension for bioelectrospraying. After their production, the SCCs were cultivated for 15 days at 37°C with an atmosphere of 5% CO2. The 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide test demonstrated that the cells remained viable and were able to grow between the fibers. Scanning electron microscopy showed the presence of a high number of cells in the structure of the scaffolds and confocal images demonstrated that the cells were able to adapt and spread between the fibers. Histological analysis of the SCCs after 1 day of cultivation showed that the cells were uniformly distributed throughout the thickness of the scaffolds. Some physicochemical properties of the scaffolds were also investigated. SCCs exhibited good mechanical properties, compatible with their handling and further implantation. The results obtained in the present study suggest that the association of electrospinning and bioelectrospraying provides an interesting tool for forming 3D cell-integrated scaffolds, making it a viable alternative for use in tissue engineering.

No MeSH data available.


Related in: MedlinePlus

Electrospinning and bioelectrospraying association apparatus.Notes: (A) Polymer solution, (B) cell suspension, (C) positive electrode, (D) negative electrode, and (E) Petri dish on rotating collector plate.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4542624&req=5

f1-ijn-10-5159: Electrospinning and bioelectrospraying association apparatus.Notes: (A) Polymer solution, (B) cell suspension, (C) positive electrode, (D) negative electrode, and (E) Petri dish on rotating collector plate.

Mentions: To integrate the cells into the fiber scaffolds, the electrospinning and bioelectrospraying techniques were applied in association. For the combination of the two methods, an apparatus formed by two parallel infusion systems (Figure 1) was used. The polymer solution was electrospun at 0.54 mL/h flow rate under 15 kV at a distance of 7.5 cm from the needle (inner diameter: 0.6 mm) to the collector plate. The cell suspensions were electrosprayed at a flow rate of 2.60 mL/h, distance of 4 cm, and voltage of 15 kV. The SCCs were formed on a Petri dish placed on a horizontal rotating plate collector (60 rpm). After 15 minutes of polymer electrospinning and electrospraying of the cells, the formed SCCs were covered with DMEM and incubated at 37°C in a 5% CO2 atmosphere. For physicochemical analysis, control scaffolds (CSs) were produced. The CS group was produced using the same electrospinning parameters used for the production of SCCs (0.54 mL/h, 15 kV, 7.5 cm) but without its association with bioelectrospraying.


Association of electrospinning with electrospraying: a strategy to produce 3D scaffolds with incorporated stem cells for use in tissue engineering.

Braghirolli DI, Zamboni F, Acasigua GA, Pranke P - Int J Nanomedicine (2015)

Electrospinning and bioelectrospraying association apparatus.Notes: (A) Polymer solution, (B) cell suspension, (C) positive electrode, (D) negative electrode, and (E) Petri dish on rotating collector plate.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4542624&req=5

f1-ijn-10-5159: Electrospinning and bioelectrospraying association apparatus.Notes: (A) Polymer solution, (B) cell suspension, (C) positive electrode, (D) negative electrode, and (E) Petri dish on rotating collector plate.
Mentions: To integrate the cells into the fiber scaffolds, the electrospinning and bioelectrospraying techniques were applied in association. For the combination of the two methods, an apparatus formed by two parallel infusion systems (Figure 1) was used. The polymer solution was electrospun at 0.54 mL/h flow rate under 15 kV at a distance of 7.5 cm from the needle (inner diameter: 0.6 mm) to the collector plate. The cell suspensions were electrosprayed at a flow rate of 2.60 mL/h, distance of 4 cm, and voltage of 15 kV. The SCCs were formed on a Petri dish placed on a horizontal rotating plate collector (60 rpm). After 15 minutes of polymer electrospinning and electrospraying of the cells, the formed SCCs were covered with DMEM and incubated at 37°C in a 5% CO2 atmosphere. For physicochemical analysis, control scaffolds (CSs) were produced. The CS group was produced using the same electrospinning parameters used for the production of SCCs (0.54 mL/h, 15 kV, 7.5 cm) but without its association with bioelectrospraying.

Bottom Line: Histological analysis of the SCCs after 1 day of cultivation showed that the cells were uniformly distributed throughout the thickness of the scaffolds.SCCs exhibited good mechanical properties, compatible with their handling and further implantation.The results obtained in the present study suggest that the association of electrospinning and bioelectrospraying provides an interesting tool for forming 3D cell-integrated scaffolds, making it a viable alternative for use in tissue engineering.

View Article: PubMed Central - PubMed

Affiliation: Hematology and Stem Cells Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil ; Department of Materials Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.

ABSTRACT
In tissue engineering, a uniform cell occupation of scaffolds is crucial to ensure the success of tissue regeneration. However, this point remains an unsolved problem in 3D scaffolds. In this study, a direct method to integrate cells into fiber scaffolds was investigated by combining the methods of electrospinning of fibers and bioelectrospraying of cells. With the associating of these methods, the cells were incorporated into the 3D scaffolds while the fibers were being produced. The scaffolds containing cells (SCCs) were produced using 20% poly(lactide-co-glycolide) solution for electrospinning and mesenchymal stem cells from deciduous teeth as a suspension for bioelectrospraying. After their production, the SCCs were cultivated for 15 days at 37°C with an atmosphere of 5% CO2. The 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide test demonstrated that the cells remained viable and were able to grow between the fibers. Scanning electron microscopy showed the presence of a high number of cells in the structure of the scaffolds and confocal images demonstrated that the cells were able to adapt and spread between the fibers. Histological analysis of the SCCs after 1 day of cultivation showed that the cells were uniformly distributed throughout the thickness of the scaffolds. Some physicochemical properties of the scaffolds were also investigated. SCCs exhibited good mechanical properties, compatible with their handling and further implantation. The results obtained in the present study suggest that the association of electrospinning and bioelectrospraying provides an interesting tool for forming 3D cell-integrated scaffolds, making it a viable alternative for use in tissue engineering.

No MeSH data available.


Related in: MedlinePlus