Limits...
Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.

Liu Y, Liu Q, Chen S, Cheng F, Wang H, Peng W - Sci Rep (2015)

Bottom Line: Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes.The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument.This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

View Article: PubMed Central - PubMed

Affiliation: School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, China.

ABSTRACT
We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

No MeSH data available.


Instrumentation of the smart phone-based surface plasmon resonance imaging biosensor.(a) Schematic of the smart phone-based SPR sensor. (b) Photograph of the SPR sensor installed on an Android-based smart phone. (c) 3D schematic illustration of the internal structure of the opto-mechanical attachment. (d) The camera of the smart phone captures the images of the measurement channel, control channel and reference channel; then, the images are rapidly processed to obtain the relative intensity. The data points are plotted and displayed on the screen.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4542615&req=5

f1: Instrumentation of the smart phone-based surface plasmon resonance imaging biosensor.(a) Schematic of the smart phone-based SPR sensor. (b) Photograph of the SPR sensor installed on an Android-based smart phone. (c) 3D schematic illustration of the internal structure of the opto-mechanical attachment. (d) The camera of the smart phone captures the images of the measurement channel, control channel and reference channel; then, the images are rapidly processed to obtain the relative intensity. The data points are plotted and displayed on the screen.

Mentions: A schematic diagram, a photograph, and the running interface of the detection system are presented in Fig. 1(a–d). Because all components are fixed to the phone case (installed on the backside of the smart phone), the touch-screen interface and display are not affected during the detection process. In this case, the sensing components and the smart phone can be assembled together into an instrument and disassembled easily after the measurement. Before the lead-in and lead-out fibers (hard plastic cladding silica optical fiber, HPOF, HP 400/430-37/730E YOFC) are fixed, all end faces of the fibers are polished using emery paper. By fixing the fibers in the corresponding slot of the phone case, the camera and LED flash in the back of the phone can be aligned with the end faces of the lead-in and lead-out fibers. After the filter, a low-cost plastic lens is used to collimate the red light because the LED flash is a cold light source. To restrain the stray light, the lead-in and lead-out fibers are covered by a black rubber tube. The other ends of the lead-in and lead-out fibers are packaged into optical fiber connectors, which facilitate the connection of the lead-in and lead-out fibers with the sensing elements inside the flow cell and easy assembly and disassembly of the sensing elements. Because the light source in our SPR system is an LED flash light rather than the high-performance sources used in other SPR devices, the power instability of the LED flash was considered. Because this SPR sensor is designed for biosensing, one of the sensing elements is used as a measurement channel that has been functionalized, and another sensing element without functionalization is used as a control channel. To compensate for fluctuations in the intensity of the LED flash, we added another HPOF as a reference channel to monitor the light intensity of the LED flash. To ensure that the light entering the lead-in fibers and reference fiber are in same condition, the end of the reference fiber is fixed next to the end of the lead-in fibers; thus, any fluctuations of the LED flash affect both the measuring channel, control channel and the reference channel in the same manner simultaneously.


Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.

Liu Y, Liu Q, Chen S, Cheng F, Wang H, Peng W - Sci Rep (2015)

Instrumentation of the smart phone-based surface plasmon resonance imaging biosensor.(a) Schematic of the smart phone-based SPR sensor. (b) Photograph of the SPR sensor installed on an Android-based smart phone. (c) 3D schematic illustration of the internal structure of the opto-mechanical attachment. (d) The camera of the smart phone captures the images of the measurement channel, control channel and reference channel; then, the images are rapidly processed to obtain the relative intensity. The data points are plotted and displayed on the screen.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4542615&req=5

f1: Instrumentation of the smart phone-based surface plasmon resonance imaging biosensor.(a) Schematic of the smart phone-based SPR sensor. (b) Photograph of the SPR sensor installed on an Android-based smart phone. (c) 3D schematic illustration of the internal structure of the opto-mechanical attachment. (d) The camera of the smart phone captures the images of the measurement channel, control channel and reference channel; then, the images are rapidly processed to obtain the relative intensity. The data points are plotted and displayed on the screen.
Mentions: A schematic diagram, a photograph, and the running interface of the detection system are presented in Fig. 1(a–d). Because all components are fixed to the phone case (installed on the backside of the smart phone), the touch-screen interface and display are not affected during the detection process. In this case, the sensing components and the smart phone can be assembled together into an instrument and disassembled easily after the measurement. Before the lead-in and lead-out fibers (hard plastic cladding silica optical fiber, HPOF, HP 400/430-37/730E YOFC) are fixed, all end faces of the fibers are polished using emery paper. By fixing the fibers in the corresponding slot of the phone case, the camera and LED flash in the back of the phone can be aligned with the end faces of the lead-in and lead-out fibers. After the filter, a low-cost plastic lens is used to collimate the red light because the LED flash is a cold light source. To restrain the stray light, the lead-in and lead-out fibers are covered by a black rubber tube. The other ends of the lead-in and lead-out fibers are packaged into optical fiber connectors, which facilitate the connection of the lead-in and lead-out fibers with the sensing elements inside the flow cell and easy assembly and disassembly of the sensing elements. Because the light source in our SPR system is an LED flash light rather than the high-performance sources used in other SPR devices, the power instability of the LED flash was considered. Because this SPR sensor is designed for biosensing, one of the sensing elements is used as a measurement channel that has been functionalized, and another sensing element without functionalization is used as a control channel. To compensate for fluctuations in the intensity of the LED flash, we added another HPOF as a reference channel to monitor the light intensity of the LED flash. To ensure that the light entering the lead-in fibers and reference fiber are in same condition, the end of the reference fiber is fixed next to the end of the lead-in fibers; thus, any fluctuations of the LED flash affect both the measuring channel, control channel and the reference channel in the same manner simultaneously.

Bottom Line: Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes.The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument.This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

View Article: PubMed Central - PubMed

Affiliation: School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, China.

ABSTRACT
We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

No MeSH data available.