Limits...
Fiber-optic triggered release of liposome in vivo: implication of personalized chemotherapy.

Huang HL, Lu PH, Yang HC, Lee GD, Li HR, Liao KC - Int J Nanomedicine (2015)

Bottom Line: The pattern of topical release triggered by laser excitation conveyed through optical fibers was monitored by the increase in fluorescence resulting from the dilution of self-quenching (75 mM) fluorescein encapsulated in liposomes.In in vitro studies (in 37°C phosphate buffer saline), the AuNP-embedded liposomes showed a more efficient triggered release (74.53%±1.63% in 40 minutes) than traditional temperature-responsive liposomes without AuNPs (14.53%±3.17%) or AuNP-liposomes without excitation (21.92%±2.08%) by spectroscopic measurements.Furthermore, the preliminary results also suggested the tunable release capability of the system by demonstrating consecutive triggered releases with fiber-optic guided laser excitation.

View Article: PubMed Central - PubMed

Affiliation: Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan.

ABSTRACT
The aim of this research is to provide proof of principle by applying the fiber-optic triggered release of photo-thermally responsive liposomes embedded with gold nanoparticles (AuNPs) using a 200 μm fiber with 65 mW and 532 nm excitation for topical release in vivo. The tunable delivery function can be paired with an apoptosis biosensor based on the same fiber-optic configuration for providing real-time evaluation of chemotherapy efficacy in vivo to perform as a personalized chemotherapy system. The pattern of topical release triggered by laser excitation conveyed through optical fibers was monitored by the increase in fluorescence resulting from the dilution of self-quenching (75 mM) fluorescein encapsulated in liposomes. In in vitro studies (in 37°C phosphate buffer saline), the AuNP-embedded liposomes showed a more efficient triggered release (74.53%±1.63% in 40 minutes) than traditional temperature-responsive liposomes without AuNPs (14.53%±3.17%) or AuNP-liposomes without excitation (21.92%±2.08%) by spectroscopic measurements. Using the mouse xenograft studies, we first demonstrated that the encapsulation of fluorescein in liposomes resulted in a more substantial content retention (81%) in the tumor than for free fluorophores (14%) at 120 minutes after administration from in vivo fluorescence imaging. Furthermore, the preliminary results also suggested the tunable release capability of the system by demonstrating consecutive triggered releases with fiber-optic guided laser excitation.

No MeSH data available.


Related in: MedlinePlus

Concept of fiber-optic triggered photo-thermal responsive liposomes release in vivo.Notes: (A) Application in anticancer treatment with intratumoral (AuNP embedded) liposome delivery and optical fiber guided laser excitation. Fluorescein was encapsulated in liposome for simulating the drug content release profiles. (B) Xenograft mice model experiment with fiber-optic conveyed laser excitation inside isoflurane chamber. (C) A computed tomography (fluoroscopy) guided needle insertion (similar or smaller needle size to percutaneous biopsy of thoracic spine tumor as figure shown) could be applied to place the device’s fiber bundle probe to reach deeper tumor.Abbreviation: AuNP, gold nanoparticle.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4542555&req=5

f1-ijn-10-5171: Concept of fiber-optic triggered photo-thermal responsive liposomes release in vivo.Notes: (A) Application in anticancer treatment with intratumoral (AuNP embedded) liposome delivery and optical fiber guided laser excitation. Fluorescein was encapsulated in liposome for simulating the drug content release profiles. (B) Xenograft mice model experiment with fiber-optic conveyed laser excitation inside isoflurane chamber. (C) A computed tomography (fluoroscopy) guided needle insertion (similar or smaller needle size to percutaneous biopsy of thoracic spine tumor as figure shown) could be applied to place the device’s fiber bundle probe to reach deeper tumor.Abbreviation: AuNP, gold nanoparticle.

Mentions: Our research group is developing a percutaneous sensing and therapeutic platform with a probe composed of hair-sized fiber bundles.22–24,28,29 The probe can comprise optical fibers for conveying excitation light and detecting returning reflection or fluorescent emission, as well as microcapillaries for delivering biomarker diagnosing agents or therapeutic agents in batches or continuously by pneumatic pressure from a spritzer or mechanical pressure from a syringe pump. The first application is a personalized chemotherapy system with a tunable chemotherapy agent delivery function (Figure 1A) and an in vivo apoptosis monitoring sensing capability (Supplementary materials 1 and 2), both sharing the same fiber bundles for agent delivery and light transmission.22 The experimental chemotherapy agent delivery platform delivers photo-thermally responsive liposomes directly into tumor, instead of relying on systematic intravenous administration. Dickerson et al demonstrated in a mouse study that intratumoral injection was more efficient at accumulating drugs in tumor tissue than intravenous administration.4 The proposed delivery system for personalized chemotherapy may also eliminate the inconsistency issue of non-invasive irradiation from conventional light sources,30 which was demonstrated in the study. The hair-like dimension of the implantable probe enables conventional clinical imaging modalities such as guided needle insertion (a similar procedure to biopsy sampling) to be used to place the fiber bundle probe within reach of deeper tumors (Figure 1C).


Fiber-optic triggered release of liposome in vivo: implication of personalized chemotherapy.

Huang HL, Lu PH, Yang HC, Lee GD, Li HR, Liao KC - Int J Nanomedicine (2015)

Concept of fiber-optic triggered photo-thermal responsive liposomes release in vivo.Notes: (A) Application in anticancer treatment with intratumoral (AuNP embedded) liposome delivery and optical fiber guided laser excitation. Fluorescein was encapsulated in liposome for simulating the drug content release profiles. (B) Xenograft mice model experiment with fiber-optic conveyed laser excitation inside isoflurane chamber. (C) A computed tomography (fluoroscopy) guided needle insertion (similar or smaller needle size to percutaneous biopsy of thoracic spine tumor as figure shown) could be applied to place the device’s fiber bundle probe to reach deeper tumor.Abbreviation: AuNP, gold nanoparticle.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4542555&req=5

f1-ijn-10-5171: Concept of fiber-optic triggered photo-thermal responsive liposomes release in vivo.Notes: (A) Application in anticancer treatment with intratumoral (AuNP embedded) liposome delivery and optical fiber guided laser excitation. Fluorescein was encapsulated in liposome for simulating the drug content release profiles. (B) Xenograft mice model experiment with fiber-optic conveyed laser excitation inside isoflurane chamber. (C) A computed tomography (fluoroscopy) guided needle insertion (similar or smaller needle size to percutaneous biopsy of thoracic spine tumor as figure shown) could be applied to place the device’s fiber bundle probe to reach deeper tumor.Abbreviation: AuNP, gold nanoparticle.
Mentions: Our research group is developing a percutaneous sensing and therapeutic platform with a probe composed of hair-sized fiber bundles.22–24,28,29 The probe can comprise optical fibers for conveying excitation light and detecting returning reflection or fluorescent emission, as well as microcapillaries for delivering biomarker diagnosing agents or therapeutic agents in batches or continuously by pneumatic pressure from a spritzer or mechanical pressure from a syringe pump. The first application is a personalized chemotherapy system with a tunable chemotherapy agent delivery function (Figure 1A) and an in vivo apoptosis monitoring sensing capability (Supplementary materials 1 and 2), both sharing the same fiber bundles for agent delivery and light transmission.22 The experimental chemotherapy agent delivery platform delivers photo-thermally responsive liposomes directly into tumor, instead of relying on systematic intravenous administration. Dickerson et al demonstrated in a mouse study that intratumoral injection was more efficient at accumulating drugs in tumor tissue than intravenous administration.4 The proposed delivery system for personalized chemotherapy may also eliminate the inconsistency issue of non-invasive irradiation from conventional light sources,30 which was demonstrated in the study. The hair-like dimension of the implantable probe enables conventional clinical imaging modalities such as guided needle insertion (a similar procedure to biopsy sampling) to be used to place the fiber bundle probe within reach of deeper tumors (Figure 1C).

Bottom Line: The pattern of topical release triggered by laser excitation conveyed through optical fibers was monitored by the increase in fluorescence resulting from the dilution of self-quenching (75 mM) fluorescein encapsulated in liposomes.In in vitro studies (in 37°C phosphate buffer saline), the AuNP-embedded liposomes showed a more efficient triggered release (74.53%±1.63% in 40 minutes) than traditional temperature-responsive liposomes without AuNPs (14.53%±3.17%) or AuNP-liposomes without excitation (21.92%±2.08%) by spectroscopic measurements.Furthermore, the preliminary results also suggested the tunable release capability of the system by demonstrating consecutive triggered releases with fiber-optic guided laser excitation.

View Article: PubMed Central - PubMed

Affiliation: Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan.

ABSTRACT
The aim of this research is to provide proof of principle by applying the fiber-optic triggered release of photo-thermally responsive liposomes embedded with gold nanoparticles (AuNPs) using a 200 μm fiber with 65 mW and 532 nm excitation for topical release in vivo. The tunable delivery function can be paired with an apoptosis biosensor based on the same fiber-optic configuration for providing real-time evaluation of chemotherapy efficacy in vivo to perform as a personalized chemotherapy system. The pattern of topical release triggered by laser excitation conveyed through optical fibers was monitored by the increase in fluorescence resulting from the dilution of self-quenching (75 mM) fluorescein encapsulated in liposomes. In in vitro studies (in 37°C phosphate buffer saline), the AuNP-embedded liposomes showed a more efficient triggered release (74.53%±1.63% in 40 minutes) than traditional temperature-responsive liposomes without AuNPs (14.53%±3.17%) or AuNP-liposomes without excitation (21.92%±2.08%) by spectroscopic measurements. Using the mouse xenograft studies, we first demonstrated that the encapsulation of fluorescein in liposomes resulted in a more substantial content retention (81%) in the tumor than for free fluorophores (14%) at 120 minutes after administration from in vivo fluorescence imaging. Furthermore, the preliminary results also suggested the tunable release capability of the system by demonstrating consecutive triggered releases with fiber-optic guided laser excitation.

No MeSH data available.


Related in: MedlinePlus