Limits...
Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes.

Vargas-Tah A, Gosset G - Front Bioeng Biotechnol (2015)

Bottom Line: These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate.These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass.A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Mexico.

ABSTRACT
The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.

No MeSH data available.


Related in: MedlinePlus

Plant metabolites produced from CA and pHCA by engineered microbial strains.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4542537&req=5

Figure 2: Plant metabolites produced from CA and pHCA by engineered microbial strains.

Mentions: Microbial strains having the capacity for producing CA or pHCA have been employed as platforms for the synthesis of various phenylpropanoid compounds. These include simple phenylpropanoids as well as lignoids, flavonoids, coumarins, and other related compounds (Figure 2) (Dixon and Steele, 1999). These plant metabolites have been shown to have pharmacological activities, such as antioxidants, anticancer, antiviral, anti-inflammatory, anti-nitric oxide production and antibacterial agents, among others (Dhanalakshmi et al., 2002). The microbial production of these compounds represents an attractive alternative to plant tissue extraction processes. However, at present, these microbial strains produce a low level of these plant compounds. It can be expected that some of the metabolic engineering strategies applied to CA and pHCA production strains, as reviewed here, should provide a basis for the future improvement of microbial strains that synthesize useful plant metabolites.


Production of Cinnamic and p-Hydroxycinnamic Acids in Engineered Microbes.

Vargas-Tah A, Gosset G - Front Bioeng Biotechnol (2015)

Plant metabolites produced from CA and pHCA by engineered microbial strains.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4542537&req=5

Figure 2: Plant metabolites produced from CA and pHCA by engineered microbial strains.
Mentions: Microbial strains having the capacity for producing CA or pHCA have been employed as platforms for the synthesis of various phenylpropanoid compounds. These include simple phenylpropanoids as well as lignoids, flavonoids, coumarins, and other related compounds (Figure 2) (Dixon and Steele, 1999). These plant metabolites have been shown to have pharmacological activities, such as antioxidants, anticancer, antiviral, anti-inflammatory, anti-nitric oxide production and antibacterial agents, among others (Dhanalakshmi et al., 2002). The microbial production of these compounds represents an attractive alternative to plant tissue extraction processes. However, at present, these microbial strains produce a low level of these plant compounds. It can be expected that some of the metabolic engineering strategies applied to CA and pHCA production strains, as reviewed here, should provide a basis for the future improvement of microbial strains that synthesize useful plant metabolites.

Bottom Line: These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate.These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass.A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.

View Article: PubMed Central - PubMed

Affiliation: Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , Mexico.

ABSTRACT
The aromatic compounds cinnamic and p-hydroxycinnamic acids (pHCAs) are phenylpropanoids having applications as precursors for the synthesis of thermoplastics, flavoring, cosmetic, and health products. These two aromatic acids can be obtained by chemical synthesis or extraction from plant tissues. However, both manufacturing processes have shortcomings, such as the generation of toxic subproducts or a low concentration in plant material. Alternative production methods are being developed to enable the biotechnological production of cinnamic and (pHCAs) by genetically engineering various microbial hosts, including Escherichia coli, Saccharomyces cerevisiae, Pseudomonas putida, and Streptomyces lividans. The natural capacity to synthesize these aromatic acids is not existent in these microbial species. Therefore, genetic modification have been performed that include the heterologous expression of genes encoding phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities, which catalyze the conversion of l-phenylalanine (l-Phe) and l-tyrosine (l-Tyr) to cinnamic acid and (pHCA), respectively. Additional host modifications include the metabolic engineering to increase carbon flow from central metabolism to the l-Phe or l-Tyr biosynthetic pathways. These strategies include the expression of feedback insensitive mutant versions of enzymes from the aromatic pathways, as well as genetic modifications to central carbon metabolism to increase biosynthetic availability of precursors phosphoenolpyruvate and erythrose-4-phosphate. These efforts have been complemented with strain optimization for the utilization of raw material, including various simple carbon sources, as well as sugar polymers and sugar mixtures derived from plant biomass. A systems biology approach to production strains characterization has been limited so far and should yield important data for future strain improvement.

No MeSH data available.


Related in: MedlinePlus