Limits...
Collaborative WiFi Fingerprinting Using Sensor-Based Navigation on Smartphones.

Zhang P, Zhao Q, Li Y, Niu X, Zhuang Y, Liu J - Sensors (Basel) (2015)

Bottom Line: Different middle-term navigation trajectories that move in and out of an indoor area are combined to make up the database.Furthermore, we evaluate the effect of WiFi database shifts on WiFi fingerprinting using the database generated by the proposed method.Results show that the fingerprinting errors will not increase linearly according to database (DB) errors in smartphone-based WiFi fingerprinting applications.

View Article: PubMed Central - PubMed

Affiliation: GNSS Research Center, Wuhan University, No.129 Luoyu Road, Wuhan 430079, China. fenix@whu.edu.cn.

ABSTRACT
This paper presents a method that trains the WiFi fingerprint database using sensor-based navigation solutions. Since micro-electromechanical systems (MEMS) sensors provide only a short-term accuracy but suffer from the accuracy degradation with time, we restrict the time length of available indoor navigation trajectories, and conduct post-processing to improve the sensor-based navigation solution. Different middle-term navigation trajectories that move in and out of an indoor area are combined to make up the database. Furthermore, we evaluate the effect of WiFi database shifts on WiFi fingerprinting using the database generated by the proposed method. Results show that the fingerprinting errors will not increase linearly according to database (DB) errors in smartphone-based WiFi fingerprinting applications.

No MeSH data available.


Time series of WiFi fingerprinting errors (a) and corresponding CDF (b).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541948&req=5

sensors-15-17534-f020: Time series of WiFi fingerprinting errors (a) and corresponding CDF (b).

Mentions: Compared with Figure 17, the largest WiFi positioning errors existed in the areas with fewer WiFi signals. To further evaluate the WiFi positioning errors, Figure 20a illustrates the time series of the WiFi positioning errors and their RMS value are illustrated, and Figure 20b shows the statistical error CDF of both solutions.


Collaborative WiFi Fingerprinting Using Sensor-Based Navigation on Smartphones.

Zhang P, Zhao Q, Li Y, Niu X, Zhuang Y, Liu J - Sensors (Basel) (2015)

Time series of WiFi fingerprinting errors (a) and corresponding CDF (b).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541948&req=5

sensors-15-17534-f020: Time series of WiFi fingerprinting errors (a) and corresponding CDF (b).
Mentions: Compared with Figure 17, the largest WiFi positioning errors existed in the areas with fewer WiFi signals. To further evaluate the WiFi positioning errors, Figure 20a illustrates the time series of the WiFi positioning errors and their RMS value are illustrated, and Figure 20b shows the statistical error CDF of both solutions.

Bottom Line: Different middle-term navigation trajectories that move in and out of an indoor area are combined to make up the database.Furthermore, we evaluate the effect of WiFi database shifts on WiFi fingerprinting using the database generated by the proposed method.Results show that the fingerprinting errors will not increase linearly according to database (DB) errors in smartphone-based WiFi fingerprinting applications.

View Article: PubMed Central - PubMed

Affiliation: GNSS Research Center, Wuhan University, No.129 Luoyu Road, Wuhan 430079, China. fenix@whu.edu.cn.

ABSTRACT
This paper presents a method that trains the WiFi fingerprint database using sensor-based navigation solutions. Since micro-electromechanical systems (MEMS) sensors provide only a short-term accuracy but suffer from the accuracy degradation with time, we restrict the time length of available indoor navigation trajectories, and conduct post-processing to improve the sensor-based navigation solution. Different middle-term navigation trajectories that move in and out of an indoor area are combined to make up the database. Furthermore, we evaluate the effect of WiFi database shifts on WiFi fingerprinting using the database generated by the proposed method. Results show that the fingerprinting errors will not increase linearly according to database (DB) errors in smartphone-based WiFi fingerprinting applications.

No MeSH data available.