Limits...
Evaluation of Fear Using Nonintrusive Measurement of Multimodal Sensors.

Choi JS, Bang JW, Heo H, Park KR - Sensors (Basel) (2015)

Bottom Line: Further, the latter causes inconvenience to the user due to the sensors attached to the body.Among various emotions, the accurate evaluation of fear is crucial in many applications, such as criminal psychology, intelligent surveillance systems and the objective evaluation of horror movies.Therefore, we propose a new method for evaluating fear based on nonintrusive measurements obtained using multiple sensors.

View Article: PubMed Central - PubMed

Affiliation: Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu, Seoul 100-715, Korea. jjongssuk@dgu.edu.

ABSTRACT
Most previous research into emotion recognition used either a single modality or multiple modalities of physiological signal. However, the former method allows for limited enhancement of accuracy, and the latter has the disadvantages that its performance can be affected by head or body movements. Further, the latter causes inconvenience to the user due to the sensors attached to the body. Among various emotions, the accurate evaluation of fear is crucial in many applications, such as criminal psychology, intelligent surveillance systems and the objective evaluation of horror movies. Therefore, we propose a new method for evaluating fear based on nonintrusive measurements obtained using multiple sensors. Experimental results based on the t-test, the effect size and the sum of all of the correlation values with other modalities showed that facial temperature and subjective evaluation are more reliable than electroencephalogram (EEG) and eye blinking rate for the evaluation of fear.

No MeSH data available.


Related in: MedlinePlus

Comparisons of FTs of facial feature regions before and after watching the horror movie (FT is facial temperature).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541947&req=5

sensors-15-17507-f014: Comparisons of FTs of facial feature regions before and after watching the horror movie (FT is facial temperature).

Mentions: Figure 14 and Table 5 show the facial temperature of facial feature regions before and after watching the horror movie. Figure 14 indicates a decrease in facial temperature after watching the horror movie in all facial feature regions. The calculated p-value for facial temperature before and after watching the movie is 0.00017 in the average of all regions, which is less than 0.01 (a confidence level of 99%). Therefore, we can confirm that the facial temperature is significantly reduced after watching the horror movie, at a confidence level of 99%. In addition, the facial temperature of the right cheek region has the lowest p-value (at 0.00006), as shown in Table 5. Our results regarding the decrease in facial temperature in the case of fear are consistent with the results of previous research [12].


Evaluation of Fear Using Nonintrusive Measurement of Multimodal Sensors.

Choi JS, Bang JW, Heo H, Park KR - Sensors (Basel) (2015)

Comparisons of FTs of facial feature regions before and after watching the horror movie (FT is facial temperature).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541947&req=5

sensors-15-17507-f014: Comparisons of FTs of facial feature regions before and after watching the horror movie (FT is facial temperature).
Mentions: Figure 14 and Table 5 show the facial temperature of facial feature regions before and after watching the horror movie. Figure 14 indicates a decrease in facial temperature after watching the horror movie in all facial feature regions. The calculated p-value for facial temperature before and after watching the movie is 0.00017 in the average of all regions, which is less than 0.01 (a confidence level of 99%). Therefore, we can confirm that the facial temperature is significantly reduced after watching the horror movie, at a confidence level of 99%. In addition, the facial temperature of the right cheek region has the lowest p-value (at 0.00006), as shown in Table 5. Our results regarding the decrease in facial temperature in the case of fear are consistent with the results of previous research [12].

Bottom Line: Further, the latter causes inconvenience to the user due to the sensors attached to the body.Among various emotions, the accurate evaluation of fear is crucial in many applications, such as criminal psychology, intelligent surveillance systems and the objective evaluation of horror movies.Therefore, we propose a new method for evaluating fear based on nonintrusive measurements obtained using multiple sensors.

View Article: PubMed Central - PubMed

Affiliation: Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu, Seoul 100-715, Korea. jjongssuk@dgu.edu.

ABSTRACT
Most previous research into emotion recognition used either a single modality or multiple modalities of physiological signal. However, the former method allows for limited enhancement of accuracy, and the latter has the disadvantages that its performance can be affected by head or body movements. Further, the latter causes inconvenience to the user due to the sensors attached to the body. Among various emotions, the accurate evaluation of fear is crucial in many applications, such as criminal psychology, intelligent surveillance systems and the objective evaluation of horror movies. Therefore, we propose a new method for evaluating fear based on nonintrusive measurements obtained using multiple sensors. Experimental results based on the t-test, the effect size and the sum of all of the correlation values with other modalities showed that facial temperature and subjective evaluation are more reliable than electroencephalogram (EEG) and eye blinking rate for the evaluation of fear.

No MeSH data available.


Related in: MedlinePlus