Limits...
Evaluation of Fear Using Nonintrusive Measurement of Multimodal Sensors.

Choi JS, Bang JW, Heo H, Park KR - Sensors (Basel) (2015)

Bottom Line: Further, the latter causes inconvenience to the user due to the sensors attached to the body.Among various emotions, the accurate evaluation of fear is crucial in many applications, such as criminal psychology, intelligent surveillance systems and the objective evaluation of horror movies.Therefore, we propose a new method for evaluating fear based on nonintrusive measurements obtained using multiple sensors.

View Article: PubMed Central - PubMed

Affiliation: Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu, Seoul 100-715, Korea. jjongssuk@dgu.edu.

ABSTRACT
Most previous research into emotion recognition used either a single modality or multiple modalities of physiological signal. However, the former method allows for limited enhancement of accuracy, and the latter has the disadvantages that its performance can be affected by head or body movements. Further, the latter causes inconvenience to the user due to the sensors attached to the body. Among various emotions, the accurate evaluation of fear is crucial in many applications, such as criminal psychology, intelligent surveillance systems and the objective evaluation of horror movies. Therefore, we propose a new method for evaluating fear based on nonintrusive measurements obtained using multiple sensors. Experimental results based on the t-test, the effect size and the sum of all of the correlation values with other modalities showed that facial temperature and subjective evaluation are more reliable than electroencephalogram (EEG) and eye blinking rate for the evaluation of fear.

No MeSH data available.


Related in: MedlinePlus

Experimental procedure for measuring fear (BR is blinking rate, FT is facial temperature and SE means subjective evaluation).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541947&req=5

sensors-15-17507-f012: Experimental procedure for measuring fear (BR is blinking rate, FT is facial temperature and SE means subjective evaluation).

Mentions: Figure 12 shows the experimental procedure for acquiring data to measure fear. To accurately measure the change in fear, the data for EEG signals, facial temperature, eye blinking rate and score on the subjective evaluation were acquired before and after watching the horror movie. The subjective evaluation score was acquired using a questionnaire that included the five questions shown in Table 3. The five questions of Table 3 were developed based on previous studies [34]. Each participant gave the answer to each question on a scale from 1 to 10 points. One and 10 points mean the minimum and maximum levels, respectively.


Evaluation of Fear Using Nonintrusive Measurement of Multimodal Sensors.

Choi JS, Bang JW, Heo H, Park KR - Sensors (Basel) (2015)

Experimental procedure for measuring fear (BR is blinking rate, FT is facial temperature and SE means subjective evaluation).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541947&req=5

sensors-15-17507-f012: Experimental procedure for measuring fear (BR is blinking rate, FT is facial temperature and SE means subjective evaluation).
Mentions: Figure 12 shows the experimental procedure for acquiring data to measure fear. To accurately measure the change in fear, the data for EEG signals, facial temperature, eye blinking rate and score on the subjective evaluation were acquired before and after watching the horror movie. The subjective evaluation score was acquired using a questionnaire that included the five questions shown in Table 3. The five questions of Table 3 were developed based on previous studies [34]. Each participant gave the answer to each question on a scale from 1 to 10 points. One and 10 points mean the minimum and maximum levels, respectively.

Bottom Line: Further, the latter causes inconvenience to the user due to the sensors attached to the body.Among various emotions, the accurate evaluation of fear is crucial in many applications, such as criminal psychology, intelligent surveillance systems and the objective evaluation of horror movies.Therefore, we propose a new method for evaluating fear based on nonintrusive measurements obtained using multiple sensors.

View Article: PubMed Central - PubMed

Affiliation: Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu, Seoul 100-715, Korea. jjongssuk@dgu.edu.

ABSTRACT
Most previous research into emotion recognition used either a single modality or multiple modalities of physiological signal. However, the former method allows for limited enhancement of accuracy, and the latter has the disadvantages that its performance can be affected by head or body movements. Further, the latter causes inconvenience to the user due to the sensors attached to the body. Among various emotions, the accurate evaluation of fear is crucial in many applications, such as criminal psychology, intelligent surveillance systems and the objective evaluation of horror movies. Therefore, we propose a new method for evaluating fear based on nonintrusive measurements obtained using multiple sensors. Experimental results based on the t-test, the effect size and the sum of all of the correlation values with other modalities showed that facial temperature and subjective evaluation are more reliable than electroencephalogram (EEG) and eye blinking rate for the evaluation of fear.

No MeSH data available.


Related in: MedlinePlus