Limits...
Evaluation of Fear Using Nonintrusive Measurement of Multimodal Sensors.

Choi JS, Bang JW, Heo H, Park KR - Sensors (Basel) (2015)

Bottom Line: Further, the latter causes inconvenience to the user due to the sensors attached to the body.Among various emotions, the accurate evaluation of fear is crucial in many applications, such as criminal psychology, intelligent surveillance systems and the objective evaluation of horror movies.Therefore, we propose a new method for evaluating fear based on nonintrusive measurements obtained using multiple sensors.

View Article: PubMed Central - PubMed

Affiliation: Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu, Seoul 100-715, Korea. jjongssuk@dgu.edu.

ABSTRACT
Most previous research into emotion recognition used either a single modality or multiple modalities of physiological signal. However, the former method allows for limited enhancement of accuracy, and the latter has the disadvantages that its performance can be affected by head or body movements. Further, the latter causes inconvenience to the user due to the sensors attached to the body. Among various emotions, the accurate evaluation of fear is crucial in many applications, such as criminal psychology, intelligent surveillance systems and the objective evaluation of horror movies. Therefore, we propose a new method for evaluating fear based on nonintrusive measurements obtained using multiple sensors. Experimental results based on the t-test, the effect size and the sum of all of the correlation values with other modalities showed that facial temperature and subjective evaluation are more reliable than electroencephalogram (EEG) and eye blinking rate for the evaluation of fear.

No MeSH data available.


Related in: MedlinePlus

Example of defined ROIs used to measure the change of facial temperature.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541947&req=5

sensors-15-17507-f007: Example of defined ROIs used to measure the change of facial temperature.

Mentions: Based on the detected facial feature regions, the ROIs for which the change of facial temperature is measured are defined. These ROIs are defined based on previous research [7,12]. In these studies, the ROIs for measuring the change of facial temperature in the face area in successive images were manually defined, which can cause the inconsistent definition of the ROIs and take a considerable amount of time [7,12]. Therefore, our method automatically detects the ROIs. Figure 7 shows the defined ROIs used to measure the change of facial temperature.


Evaluation of Fear Using Nonintrusive Measurement of Multimodal Sensors.

Choi JS, Bang JW, Heo H, Park KR - Sensors (Basel) (2015)

Example of defined ROIs used to measure the change of facial temperature.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541947&req=5

sensors-15-17507-f007: Example of defined ROIs used to measure the change of facial temperature.
Mentions: Based on the detected facial feature regions, the ROIs for which the change of facial temperature is measured are defined. These ROIs are defined based on previous research [7,12]. In these studies, the ROIs for measuring the change of facial temperature in the face area in successive images were manually defined, which can cause the inconsistent definition of the ROIs and take a considerable amount of time [7,12]. Therefore, our method automatically detects the ROIs. Figure 7 shows the defined ROIs used to measure the change of facial temperature.

Bottom Line: Further, the latter causes inconvenience to the user due to the sensors attached to the body.Among various emotions, the accurate evaluation of fear is crucial in many applications, such as criminal psychology, intelligent surveillance systems and the objective evaluation of horror movies.Therefore, we propose a new method for evaluating fear based on nonintrusive measurements obtained using multiple sensors.

View Article: PubMed Central - PubMed

Affiliation: Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu, Seoul 100-715, Korea. jjongssuk@dgu.edu.

ABSTRACT
Most previous research into emotion recognition used either a single modality or multiple modalities of physiological signal. However, the former method allows for limited enhancement of accuracy, and the latter has the disadvantages that its performance can be affected by head or body movements. Further, the latter causes inconvenience to the user due to the sensors attached to the body. Among various emotions, the accurate evaluation of fear is crucial in many applications, such as criminal psychology, intelligent surveillance systems and the objective evaluation of horror movies. Therefore, we propose a new method for evaluating fear based on nonintrusive measurements obtained using multiple sensors. Experimental results based on the t-test, the effect size and the sum of all of the correlation values with other modalities showed that facial temperature and subjective evaluation are more reliable than electroencephalogram (EEG) and eye blinking rate for the evaluation of fear.

No MeSH data available.


Related in: MedlinePlus