Limits...
Low Power Resistive Oxygen Sensor Based on Sonochemical SrTi0.6Fe0.4O2.8 (STFO40).

Stratulat A, Serban BC, de Luca A, Avramescu V, Cobianu C, Brezeanu M, Buiu O, Diamandescu L, Feder M, Ali SZ, Udrea F - Sensors (Basel) (2015)

Bottom Line: Oxygen detection tests are performed in both dry (RH = 0%) and humid (RH = 60%) nitrogen atmosphere, varying oxygen concentrations between 1% and 16% (v/v), at a constant heater temperature of 650 °C.The oxygen sensor, based on the Sono-STFO40 sensing layer, shows good sensitivity, low power consumption (80 mW), and short response time (25 s).These performance are comparable to those exhibited by state-of-the-art O2 sensors based on STFO60, thus proving Sono-STFO40 to be a material suitable for oxygen detection in harsh environments.

View Article: PubMed Central - PubMed

Affiliation: Honeywell Romania SRL, Sensors and Wireless Laboratory Bucharest (SWLB), Bucharest 020339, Romania. alisa.stratulat@honeywell.com.

ABSTRACT
The current paper reports on a sonochemical synthesis method for manufacturing nanostructured (typical grain size of 50 nm) SrTi0.6Fe0.4O2.8 (Sono-STFO40) powder. This powder is characterized using X ray-diffraction (XRD), Mössbauer spectroscopy and Scanning Electron Microscopy (SEM), and results are compared with commercially available SrTi0.4Fe0.6O2.8 (STFO60) powder. In order to manufacture resistive oxygen sensors, both Sono-STFO40 and STFO60 are deposited, by dip-pen nanolithography (DPN) method, on an SOI (Silicon-on-Insulator) micro-hotplate, employing a tungsten heater embedded within a dielectric membrane. Oxygen detection tests are performed in both dry (RH = 0%) and humid (RH = 60%) nitrogen atmosphere, varying oxygen concentrations between 1% and 16% (v/v), at a constant heater temperature of 650 °C. The oxygen sensor, based on the Sono-STFO40 sensing layer, shows good sensitivity, low power consumption (80 mW), and short response time (25 s). These performance are comparable to those exhibited by state-of-the-art O2 sensors based on STFO60, thus proving Sono-STFO40 to be a material suitable for oxygen detection in harsh environments.

No MeSH data available.


Oxygen sensor response in dry nitrogen atmosphere (1%–16% O2) for: (a) Sono-STFO40 and (b) STFO60.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541946&req=5

sensors-15-17495-f006: Oxygen sensor response in dry nitrogen atmosphere (1%–16% O2) for: (a) Sono-STFO40 and (b) STFO60.

Mentions: The sensing capabilities of the two layers are depicted in Figure 6. The Sono-STFO40-based sensor exhibits a resistance one order of magnitude higher than its STFO60 counterpart. This is due to the lower thickness of the Sono-STFO40 layer (~1 µm), owing to the lower viscosity of the slurry. The thickness of the STFO60 layer was measured to be 3 µm. Another reason for the difference in resistivity is related to the Fe doping level, which is larger in STFO60 than in Sono-STFO40, thus inducing a decrease in resistance.


Low Power Resistive Oxygen Sensor Based on Sonochemical SrTi0.6Fe0.4O2.8 (STFO40).

Stratulat A, Serban BC, de Luca A, Avramescu V, Cobianu C, Brezeanu M, Buiu O, Diamandescu L, Feder M, Ali SZ, Udrea F - Sensors (Basel) (2015)

Oxygen sensor response in dry nitrogen atmosphere (1%–16% O2) for: (a) Sono-STFO40 and (b) STFO60.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541946&req=5

sensors-15-17495-f006: Oxygen sensor response in dry nitrogen atmosphere (1%–16% O2) for: (a) Sono-STFO40 and (b) STFO60.
Mentions: The sensing capabilities of the two layers are depicted in Figure 6. The Sono-STFO40-based sensor exhibits a resistance one order of magnitude higher than its STFO60 counterpart. This is due to the lower thickness of the Sono-STFO40 layer (~1 µm), owing to the lower viscosity of the slurry. The thickness of the STFO60 layer was measured to be 3 µm. Another reason for the difference in resistivity is related to the Fe doping level, which is larger in STFO60 than in Sono-STFO40, thus inducing a decrease in resistance.

Bottom Line: Oxygen detection tests are performed in both dry (RH = 0%) and humid (RH = 60%) nitrogen atmosphere, varying oxygen concentrations between 1% and 16% (v/v), at a constant heater temperature of 650 °C.The oxygen sensor, based on the Sono-STFO40 sensing layer, shows good sensitivity, low power consumption (80 mW), and short response time (25 s).These performance are comparable to those exhibited by state-of-the-art O2 sensors based on STFO60, thus proving Sono-STFO40 to be a material suitable for oxygen detection in harsh environments.

View Article: PubMed Central - PubMed

Affiliation: Honeywell Romania SRL, Sensors and Wireless Laboratory Bucharest (SWLB), Bucharest 020339, Romania. alisa.stratulat@honeywell.com.

ABSTRACT
The current paper reports on a sonochemical synthesis method for manufacturing nanostructured (typical grain size of 50 nm) SrTi0.6Fe0.4O2.8 (Sono-STFO40) powder. This powder is characterized using X ray-diffraction (XRD), Mössbauer spectroscopy and Scanning Electron Microscopy (SEM), and results are compared with commercially available SrTi0.4Fe0.6O2.8 (STFO60) powder. In order to manufacture resistive oxygen sensors, both Sono-STFO40 and STFO60 are deposited, by dip-pen nanolithography (DPN) method, on an SOI (Silicon-on-Insulator) micro-hotplate, employing a tungsten heater embedded within a dielectric membrane. Oxygen detection tests are performed in both dry (RH = 0%) and humid (RH = 60%) nitrogen atmosphere, varying oxygen concentrations between 1% and 16% (v/v), at a constant heater temperature of 650 °C. The oxygen sensor, based on the Sono-STFO40 sensing layer, shows good sensitivity, low power consumption (80 mW), and short response time (25 s). These performance are comparable to those exhibited by state-of-the-art O2 sensors based on STFO60, thus proving Sono-STFO40 to be a material suitable for oxygen detection in harsh environments.

No MeSH data available.