Limits...
Low Power Resistive Oxygen Sensor Based on Sonochemical SrTi0.6Fe0.4O2.8 (STFO40).

Stratulat A, Serban BC, de Luca A, Avramescu V, Cobianu C, Brezeanu M, Buiu O, Diamandescu L, Feder M, Ali SZ, Udrea F - Sensors (Basel) (2015)

Bottom Line: Oxygen detection tests are performed in both dry (RH = 0%) and humid (RH = 60%) nitrogen atmosphere, varying oxygen concentrations between 1% and 16% (v/v), at a constant heater temperature of 650 °C.The oxygen sensor, based on the Sono-STFO40 sensing layer, shows good sensitivity, low power consumption (80 mW), and short response time (25 s).These performance are comparable to those exhibited by state-of-the-art O2 sensors based on STFO60, thus proving Sono-STFO40 to be a material suitable for oxygen detection in harsh environments.

View Article: PubMed Central - PubMed

Affiliation: Honeywell Romania SRL, Sensors and Wireless Laboratory Bucharest (SWLB), Bucharest 020339, Romania. alisa.stratulat@honeywell.com.

ABSTRACT
The current paper reports on a sonochemical synthesis method for manufacturing nanostructured (typical grain size of 50 nm) SrTi0.6Fe0.4O2.8 (Sono-STFO40) powder. This powder is characterized using X ray-diffraction (XRD), Mössbauer spectroscopy and Scanning Electron Microscopy (SEM), and results are compared with commercially available SrTi0.4Fe0.6O2.8 (STFO60) powder. In order to manufacture resistive oxygen sensors, both Sono-STFO40 and STFO60 are deposited, by dip-pen nanolithography (DPN) method, on an SOI (Silicon-on-Insulator) micro-hotplate, employing a tungsten heater embedded within a dielectric membrane. Oxygen detection tests are performed in both dry (RH = 0%) and humid (RH = 60%) nitrogen atmosphere, varying oxygen concentrations between 1% and 16% (v/v), at a constant heater temperature of 650 °C. The oxygen sensor, based on the Sono-STFO40 sensing layer, shows good sensitivity, low power consumption (80 mW), and short response time (25 s). These performance are comparable to those exhibited by state-of-the-art O2 sensors based on STFO60, thus proving Sono-STFO40 to be a material suitable for oxygen detection in harsh environments.

No MeSH data available.


X-ray diffractogram of (a) the Sono-STFO40 and (b) commercially available STFO60.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541946&req=5

sensors-15-17495-f003: X-ray diffractogram of (a) the Sono-STFO40 and (b) commercially available STFO60.

Mentions: For the Sono-STFO40 powder synthesized as described in the previous chapter, the Rietveld refinement of the X-ray diffractogram (XRD) in Figure 3a indicates that the composition is the following: 97.55% Sr(Ti0.6Fe0.4)O2.845 and 2.45% SrFe12O19. The average crystallite size is approximately 50 nm. For the purpose of comparing the structure and O2 detection performance of the Sono-STFO40 with the STFOx state-of-the-art, an XRD analysis (Figure 3b) was also performed on commercially available SrTi0.4Fe0.6O2.8 (STFO60) produced by Neri et al. [10,11,12].


Low Power Resistive Oxygen Sensor Based on Sonochemical SrTi0.6Fe0.4O2.8 (STFO40).

Stratulat A, Serban BC, de Luca A, Avramescu V, Cobianu C, Brezeanu M, Buiu O, Diamandescu L, Feder M, Ali SZ, Udrea F - Sensors (Basel) (2015)

X-ray diffractogram of (a) the Sono-STFO40 and (b) commercially available STFO60.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541946&req=5

sensors-15-17495-f003: X-ray diffractogram of (a) the Sono-STFO40 and (b) commercially available STFO60.
Mentions: For the Sono-STFO40 powder synthesized as described in the previous chapter, the Rietveld refinement of the X-ray diffractogram (XRD) in Figure 3a indicates that the composition is the following: 97.55% Sr(Ti0.6Fe0.4)O2.845 and 2.45% SrFe12O19. The average crystallite size is approximately 50 nm. For the purpose of comparing the structure and O2 detection performance of the Sono-STFO40 with the STFOx state-of-the-art, an XRD analysis (Figure 3b) was also performed on commercially available SrTi0.4Fe0.6O2.8 (STFO60) produced by Neri et al. [10,11,12].

Bottom Line: Oxygen detection tests are performed in both dry (RH = 0%) and humid (RH = 60%) nitrogen atmosphere, varying oxygen concentrations between 1% and 16% (v/v), at a constant heater temperature of 650 °C.The oxygen sensor, based on the Sono-STFO40 sensing layer, shows good sensitivity, low power consumption (80 mW), and short response time (25 s).These performance are comparable to those exhibited by state-of-the-art O2 sensors based on STFO60, thus proving Sono-STFO40 to be a material suitable for oxygen detection in harsh environments.

View Article: PubMed Central - PubMed

Affiliation: Honeywell Romania SRL, Sensors and Wireless Laboratory Bucharest (SWLB), Bucharest 020339, Romania. alisa.stratulat@honeywell.com.

ABSTRACT
The current paper reports on a sonochemical synthesis method for manufacturing nanostructured (typical grain size of 50 nm) SrTi0.6Fe0.4O2.8 (Sono-STFO40) powder. This powder is characterized using X ray-diffraction (XRD), Mössbauer spectroscopy and Scanning Electron Microscopy (SEM), and results are compared with commercially available SrTi0.4Fe0.6O2.8 (STFO60) powder. In order to manufacture resistive oxygen sensors, both Sono-STFO40 and STFO60 are deposited, by dip-pen nanolithography (DPN) method, on an SOI (Silicon-on-Insulator) micro-hotplate, employing a tungsten heater embedded within a dielectric membrane. Oxygen detection tests are performed in both dry (RH = 0%) and humid (RH = 60%) nitrogen atmosphere, varying oxygen concentrations between 1% and 16% (v/v), at a constant heater temperature of 650 °C. The oxygen sensor, based on the Sono-STFO40 sensing layer, shows good sensitivity, low power consumption (80 mW), and short response time (25 s). These performance are comparable to those exhibited by state-of-the-art O2 sensors based on STFO60, thus proving Sono-STFO40 to be a material suitable for oxygen detection in harsh environments.

No MeSH data available.