Limits...
Self-Balancing Position-Sensitive Detector (SBPSD).

Porrazzo R, Lydecker L, Gattu S, Bakhru H, Tokranova N, Castracane J - Sensors (Basel) (2015)

Bottom Line: Fabricated prototype devices demonstrate linear, symmetric coordinate characteristics and a spatial resolution of 200 μm for a 74 mm device.PSDs are commercially available only up to a length of 37 mm.Prototype devices were fabricated with various lengths up to 100 mm and can be scaled down to any size below that.

View Article: PubMed Central - PubMed

Affiliation: Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12222, USA. rporrazzo@albany.edu.

ABSTRACT
Optical position-sensitive detectors (PSDs) are a non-contact method of tracking the location of a light spot. Silicon-based versions of such sensors are fabricated with standard CMOS technology, are inexpensive and provide a real-time, analog signal output corresponding to the position of the light spot. An innovative type of optical position sensor was developed using two back-to-back connected photodiodes. These so called self-balancing position-sensitive detectors (SBPSDs) eliminate the need for external readout circuitry entirely. Fabricated prototype devices demonstrate linear, symmetric coordinate characteristics and a spatial resolution of 200 μm for a 74 mm device. PSDs are commercially available only up to a length of 37 mm. Prototype devices were fabricated with various lengths up to 100 mm and can be scaled down to any size below that.

No MeSH data available.


Related in: MedlinePlus

Photogenerated current from SBPSD as a function of incident LED power, showing the device responsivity in A/W as the slope of the curve.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541945&req=5

sensors-15-17483-f003: Photogenerated current from SBPSD as a function of incident LED power, showing the device responsivity in A/W as the slope of the curve.

Mentions: In order to determine the responsivity of the position sensitive detectors presented, I-V curves were measured at various LED intensities controlled by the applied current as well as with no illumination. The photogenerated current was obtained by subtracting the measured dark current from the illuminated response. The light intensity was measured using calibrated photodiodes inside a Newport 1815-C Power Meter. The spot used for measurement was completely inside the photosensitive area of the device, the same as in the calibrated photodiode. The responsivity of the prototype detectors in this work was determined to be 0.43 A/W after averaging measurements on three devices, as shown in Figure 3, which compares favorably with commercially available photodiodes illuminated with a 623 nm wavelength LED.


Self-Balancing Position-Sensitive Detector (SBPSD).

Porrazzo R, Lydecker L, Gattu S, Bakhru H, Tokranova N, Castracane J - Sensors (Basel) (2015)

Photogenerated current from SBPSD as a function of incident LED power, showing the device responsivity in A/W as the slope of the curve.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541945&req=5

sensors-15-17483-f003: Photogenerated current from SBPSD as a function of incident LED power, showing the device responsivity in A/W as the slope of the curve.
Mentions: In order to determine the responsivity of the position sensitive detectors presented, I-V curves were measured at various LED intensities controlled by the applied current as well as with no illumination. The photogenerated current was obtained by subtracting the measured dark current from the illuminated response. The light intensity was measured using calibrated photodiodes inside a Newport 1815-C Power Meter. The spot used for measurement was completely inside the photosensitive area of the device, the same as in the calibrated photodiode. The responsivity of the prototype detectors in this work was determined to be 0.43 A/W after averaging measurements on three devices, as shown in Figure 3, which compares favorably with commercially available photodiodes illuminated with a 623 nm wavelength LED.

Bottom Line: Fabricated prototype devices demonstrate linear, symmetric coordinate characteristics and a spatial resolution of 200 μm for a 74 mm device.PSDs are commercially available only up to a length of 37 mm.Prototype devices were fabricated with various lengths up to 100 mm and can be scaled down to any size below that.

View Article: PubMed Central - PubMed

Affiliation: Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12222, USA. rporrazzo@albany.edu.

ABSTRACT
Optical position-sensitive detectors (PSDs) are a non-contact method of tracking the location of a light spot. Silicon-based versions of such sensors are fabricated with standard CMOS technology, are inexpensive and provide a real-time, analog signal output corresponding to the position of the light spot. An innovative type of optical position sensor was developed using two back-to-back connected photodiodes. These so called self-balancing position-sensitive detectors (SBPSDs) eliminate the need for external readout circuitry entirely. Fabricated prototype devices demonstrate linear, symmetric coordinate characteristics and a spatial resolution of 200 μm for a 74 mm device. PSDs are commercially available only up to a length of 37 mm. Prototype devices were fabricated with various lengths up to 100 mm and can be scaled down to any size below that.

No MeSH data available.


Related in: MedlinePlus