Limits...
Design of a High-Performance Micro Integrated Surface Plasmon Resonance Sensor Based on Silicon-On-Insulator Rib Waveguide Array.

Yuan D, Dong Y, Liu Y, Li T - Sensors (Basel) (2015)

Bottom Line: As a typical example, a single bimetallic SPR sensor with 3 nm Au over 32 nm Al possesses a high sensitivity of 3.968 × 104 nm/RIU, a detection-accuracy of 14.7 μm(-1).For a uniparted SPR sensor, it can achieve a detection limit of 5.04 × 10(-7) RIU.With the relative power measurement accuracy of 0.01 dB, the refractive index variation of 1.14 × 10(-5) RIU can be detected by the SPR sensor array.

View Article: PubMed Central - PubMed

Affiliation: Graduate School at Shenzhen, Tsinghua University, J209A, Tsinghua Campus, University Town of Shenzhen, Shenzhen 518055, China. ydp12@mails.tsinghua.edu.cn.

ABSTRACT
Based on silicon-on-insulator (SOI) rib waveguide with large cross-section, a micro integrated surface plasmon resonance (SPR) biochemical sensor platform is proposed. SPR is excited at the deeply etched facet of the bend waveguide by the guiding mode and a bimetallic configuration is employed. With the advantages of SOI rib waveguide and the silicon microfabrication technology, an array of the SPR sensors can be composed to implement wavelength interrogation of the sensors' output signal, so the spectrometer or other bulky and expensive equipment are not necessary, which enables the SPR sensor to realize the miniaturization and integration of the entire sensing system. The performances of the SPR sensor element are verified by using the two-dimensional finite-different time-domain method. The parameters of the sensor element and the array are optimized for the achievement of high performance for biochemical sensing application. As a typical example, a single bimetallic SPR sensor with 3 nm Au over 32 nm Al possesses a high sensitivity of 3.968 × 104 nm/RIU, a detection-accuracy of 14.7 μm(-1). For a uniparted SPR sensor, it can achieve a detection limit of 5.04 × 10(-7) RIU. With the relative power measurement accuracy of 0.01 dB, the refractive index variation of 1.14 × 10(-5) RIU can be detected by the SPR sensor array.

No MeSH data available.


Related in: MedlinePlus

The dispersion of the fundamental transverse electric (TE) guiding mode of the SOI rib waveguide with the total rib height of 10 μm, outside rib height of 5 μm, rib width of 5 μm.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541936&req=5

sensors-15-17313-f004: The dispersion of the fundamental transverse electric (TE) guiding mode of the SOI rib waveguide with the total rib height of 10 μm, outside rib height of 5 μm, rib width of 5 μm.

Mentions: The dispersion of the fundamental TE-polarized guiding mode of the SOI rib waveguide (as shown in Figure 2) can be obtain by using a FDM with PMLs, and Si and SiO2 in SOI also employ the dispersive data [27]. The curve about the effective refractive index neff with respect to the wavelength of incident light is shown in Figure 4.


Design of a High-Performance Micro Integrated Surface Plasmon Resonance Sensor Based on Silicon-On-Insulator Rib Waveguide Array.

Yuan D, Dong Y, Liu Y, Li T - Sensors (Basel) (2015)

The dispersion of the fundamental transverse electric (TE) guiding mode of the SOI rib waveguide with the total rib height of 10 μm, outside rib height of 5 μm, rib width of 5 μm.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541936&req=5

sensors-15-17313-f004: The dispersion of the fundamental transverse electric (TE) guiding mode of the SOI rib waveguide with the total rib height of 10 μm, outside rib height of 5 μm, rib width of 5 μm.
Mentions: The dispersion of the fundamental TE-polarized guiding mode of the SOI rib waveguide (as shown in Figure 2) can be obtain by using a FDM with PMLs, and Si and SiO2 in SOI also employ the dispersive data [27]. The curve about the effective refractive index neff with respect to the wavelength of incident light is shown in Figure 4.

Bottom Line: As a typical example, a single bimetallic SPR sensor with 3 nm Au over 32 nm Al possesses a high sensitivity of 3.968 × 104 nm/RIU, a detection-accuracy of 14.7 μm(-1).For a uniparted SPR sensor, it can achieve a detection limit of 5.04 × 10(-7) RIU.With the relative power measurement accuracy of 0.01 dB, the refractive index variation of 1.14 × 10(-5) RIU can be detected by the SPR sensor array.

View Article: PubMed Central - PubMed

Affiliation: Graduate School at Shenzhen, Tsinghua University, J209A, Tsinghua Campus, University Town of Shenzhen, Shenzhen 518055, China. ydp12@mails.tsinghua.edu.cn.

ABSTRACT
Based on silicon-on-insulator (SOI) rib waveguide with large cross-section, a micro integrated surface plasmon resonance (SPR) biochemical sensor platform is proposed. SPR is excited at the deeply etched facet of the bend waveguide by the guiding mode and a bimetallic configuration is employed. With the advantages of SOI rib waveguide and the silicon microfabrication technology, an array of the SPR sensors can be composed to implement wavelength interrogation of the sensors' output signal, so the spectrometer or other bulky and expensive equipment are not necessary, which enables the SPR sensor to realize the miniaturization and integration of the entire sensing system. The performances of the SPR sensor element are verified by using the two-dimensional finite-different time-domain method. The parameters of the sensor element and the array are optimized for the achievement of high performance for biochemical sensing application. As a typical example, a single bimetallic SPR sensor with 3 nm Au over 32 nm Al possesses a high sensitivity of 3.968 × 104 nm/RIU, a detection-accuracy of 14.7 μm(-1). For a uniparted SPR sensor, it can achieve a detection limit of 5.04 × 10(-7) RIU. With the relative power measurement accuracy of 0.01 dB, the refractive index variation of 1.14 × 10(-5) RIU can be detected by the SPR sensor array.

No MeSH data available.


Related in: MedlinePlus