Limits...
VisitSense: Sensing Place Visit Patterns from Ambient Radio on Smartphones for Targeted Mobile Ads in Shopping Malls.

Kim B, Kang S, Ha JY, Song J - Sensors (Basel) (2015)

Bottom Line: For accurate visit detection, we develop a change-based detection method to take into consideration the stability change of ambient radio and the mobility change of users.In addition, we proposed a causality-based visit prediction model to capture the causality in the sequential visit patterns for effective prediction.We have developed a VisitSense prototype system, and a visit-pattern-aware mobile advertising application that is based on it.

View Article: PubMed Central - PubMed

Affiliation: School of Computing, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong, Daejeon 305-338, Korea. bjkim@nclab.kaist.ac.kr.

ABSTRACT
In this paper, we introduce a novel smartphone framework called VisitSense that automatically detects and predicts a smartphone user's place visits from ambient radio to enable behavioral targeting for mobile ads in large shopping malls. VisitSense enables mobile app developers to adopt visit-pattern-aware mobile advertising for shopping mall visitors in their apps. It also benefits mobile users by allowing them to receive highly relevant mobile ads that are aware of their place visit patterns in shopping malls. To achieve the goal, VisitSense employs accurate visit detection and prediction methods. For accurate visit detection, we develop a change-based detection method to take into consideration the stability change of ambient radio and the mobility change of users. It performs well in large shopping malls where ambient radio is quite noisy and causes existing algorithms to easily fail. In addition, we proposed a causality-based visit prediction model to capture the causality in the sequential visit patterns for effective prediction. We have developed a VisitSense prototype system, and a visit-pattern-aware mobile advertising application that is based on it. Furthermore, we deploy the system in the COEX Mall, one of the largest shopping malls in Korea, and conduct diverse experiments to show the effectiveness of VisitSense.

No MeSH data available.


A Bayesian network for visit prediction.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541934&req=5

sensors-15-17274-f009: A Bayesian network for visit prediction.

Mentions: Figure 9 shows a causality-based visit prediction model using Bayesian networks. Conceptually, in the model, an edge represents the causality between linked nodes (or random variables). More specifically, the model implies that current visit place P0 is influenced by special features such as the previous visit place P1 and P2, and temporal features such as the previous visit duration D1 and current time T0. In addition, it is influenced by profile features such as gender G and age A. The conditional probability distributions of the proposed BN have been learned by using the E-M algorithm [24].


VisitSense: Sensing Place Visit Patterns from Ambient Radio on Smartphones for Targeted Mobile Ads in Shopping Malls.

Kim B, Kang S, Ha JY, Song J - Sensors (Basel) (2015)

A Bayesian network for visit prediction.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541934&req=5

sensors-15-17274-f009: A Bayesian network for visit prediction.
Mentions: Figure 9 shows a causality-based visit prediction model using Bayesian networks. Conceptually, in the model, an edge represents the causality between linked nodes (or random variables). More specifically, the model implies that current visit place P0 is influenced by special features such as the previous visit place P1 and P2, and temporal features such as the previous visit duration D1 and current time T0. In addition, it is influenced by profile features such as gender G and age A. The conditional probability distributions of the proposed BN have been learned by using the E-M algorithm [24].

Bottom Line: For accurate visit detection, we develop a change-based detection method to take into consideration the stability change of ambient radio and the mobility change of users.In addition, we proposed a causality-based visit prediction model to capture the causality in the sequential visit patterns for effective prediction.We have developed a VisitSense prototype system, and a visit-pattern-aware mobile advertising application that is based on it.

View Article: PubMed Central - PubMed

Affiliation: School of Computing, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong, Daejeon 305-338, Korea. bjkim@nclab.kaist.ac.kr.

ABSTRACT
In this paper, we introduce a novel smartphone framework called VisitSense that automatically detects and predicts a smartphone user's place visits from ambient radio to enable behavioral targeting for mobile ads in large shopping malls. VisitSense enables mobile app developers to adopt visit-pattern-aware mobile advertising for shopping mall visitors in their apps. It also benefits mobile users by allowing them to receive highly relevant mobile ads that are aware of their place visit patterns in shopping malls. To achieve the goal, VisitSense employs accurate visit detection and prediction methods. For accurate visit detection, we develop a change-based detection method to take into consideration the stability change of ambient radio and the mobility change of users. It performs well in large shopping malls where ambient radio is quite noisy and causes existing algorithms to easily fail. In addition, we proposed a causality-based visit prediction model to capture the causality in the sequential visit patterns for effective prediction. We have developed a VisitSense prototype system, and a visit-pattern-aware mobile advertising application that is based on it. Furthermore, we deploy the system in the COEX Mall, one of the largest shopping malls in Korea, and conduct diverse experiments to show the effectiveness of VisitSense.

No MeSH data available.