Limits...
Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation.

Zhou H, Lu Y, Chen W, Wu Z, Zou H, Krundel L, Li G - Sensors (Basel) (2015)

Bottom Line: Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation.The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain.Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Human-Machine Intelligence-Synergy Systems of Chinese Academy of Sciences, Shenzhen 518055, China. hui.zhou@siat.ac.cn.

ABSTRACT
Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.

No MeSH data available.


Related in: MedlinePlus

Microscopic view of two textile electrodes: (a) the dry textile electrode; (b) the wet textile electrode.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541932&req=5

sensors-15-17241-f003: Microscopic view of two textile electrodes: (a) the dry textile electrode; (b) the wet textile electrode.

Mentions: Microscopic views of the dry and wet textile electrodes are shown in Figure 3, from which we could see that there are some water drops between the textile grids in the wet electrode (Figure 3b). For comparison purposes, a commercially available common hydrogel electrode (Nanjing Dalun Medical Technology Co. Ltd., Nanjing, China) was also used in the experiments. All these electrodes had a similar size of approximately 6 cm × 4 cm. For each subject, the three types of electrode would be mounted on his/her TA muscle in a random order, respectively. The electrode locations were marked with a pen to ensure that the replacement of each type of electrodes could be at the same sites.


Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation.

Zhou H, Lu Y, Chen W, Wu Z, Zou H, Krundel L, Li G - Sensors (Basel) (2015)

Microscopic view of two textile electrodes: (a) the dry textile electrode; (b) the wet textile electrode.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541932&req=5

sensors-15-17241-f003: Microscopic view of two textile electrodes: (a) the dry textile electrode; (b) the wet textile electrode.
Mentions: Microscopic views of the dry and wet textile electrodes are shown in Figure 3, from which we could see that there are some water drops between the textile grids in the wet electrode (Figure 3b). For comparison purposes, a commercially available common hydrogel electrode (Nanjing Dalun Medical Technology Co. Ltd., Nanjing, China) was also used in the experiments. All these electrodes had a similar size of approximately 6 cm × 4 cm. For each subject, the three types of electrode would be mounted on his/her TA muscle in a random order, respectively. The electrode locations were marked with a pen to ensure that the replacement of each type of electrodes could be at the same sites.

Bottom Line: Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation.The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain.Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Human-Machine Intelligence-Synergy Systems of Chinese Academy of Sciences, Shenzhen 518055, China. hui.zhou@siat.ac.cn.

ABSTRACT
Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.

No MeSH data available.


Related in: MedlinePlus