Limits...
Optical Fibre Pressure Sensors in Medical Applications.

Poeggel S, Tosi D, Duraibabu D, Leen G, McGrath D, Lewis E - Sensors (Basel) (2015)

Bottom Line: This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications.The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement.This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas.

View Article: PubMed Central - PubMed

Affiliation: Optical Fibre Sensors Research Centre, University of Limerick, Limerick, Ireland. Sven@Poeggel.eu.

ABSTRACT
This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas.

Show MeSH

Related in: MedlinePlus

(a) Distributed pressure sensor based on an FBG chain with transducers; (b) sensor placed in a catheter.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541926&req=5

f6-sensors-15-17115: (a) Distributed pressure sensor based on an FBG chain with transducers; (b) sensor placed in a catheter.

Mentions: Arkwright et al. [129,130] (2009) presented a manometry catheter based on FBG arrays (from FBGs) with a series of 72 sensing elements with a spacial distance of 1 cm. Each FBG is inserted into a casing design (schematic in Figure 6a) and is used to transpose pressure into strain, resulting in multi-pressure measurements [131,132]. The sensor structure was tested for 0–26.7 kPa (0–200 mmHg) with an accuracy of 0.4 kPa (3.1 mmHg), a sensitivity of and a frequency of 10 Hz. The FBGs are surrounded by a transducer, converting the pressure into strain (Figure 6a). The catheter (Figure 6b) was tested in vivo in a human colon over 24 h. In their study, they placed the sensing elements in the ascending colon, in the transverse colon, in the descending colon and in the sigmoid colon [129]. This successful test revealed the complex pressure nature of the colon for the first time. This technique is an example of where optical fibres have surpassed the gold-standard and, in fact, opened a new area of high-resolution manometry (HRM). This technique was recently (2014) used in a study of 10 healthy humans and revealed a new understanding in the propagating motor pattern of the human colon [133].


Optical Fibre Pressure Sensors in Medical Applications.

Poeggel S, Tosi D, Duraibabu D, Leen G, McGrath D, Lewis E - Sensors (Basel) (2015)

(a) Distributed pressure sensor based on an FBG chain with transducers; (b) sensor placed in a catheter.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541926&req=5

f6-sensors-15-17115: (a) Distributed pressure sensor based on an FBG chain with transducers; (b) sensor placed in a catheter.
Mentions: Arkwright et al. [129,130] (2009) presented a manometry catheter based on FBG arrays (from FBGs) with a series of 72 sensing elements with a spacial distance of 1 cm. Each FBG is inserted into a casing design (schematic in Figure 6a) and is used to transpose pressure into strain, resulting in multi-pressure measurements [131,132]. The sensor structure was tested for 0–26.7 kPa (0–200 mmHg) with an accuracy of 0.4 kPa (3.1 mmHg), a sensitivity of and a frequency of 10 Hz. The FBGs are surrounded by a transducer, converting the pressure into strain (Figure 6a). The catheter (Figure 6b) was tested in vivo in a human colon over 24 h. In their study, they placed the sensing elements in the ascending colon, in the transverse colon, in the descending colon and in the sigmoid colon [129]. This successful test revealed the complex pressure nature of the colon for the first time. This technique is an example of where optical fibres have surpassed the gold-standard and, in fact, opened a new area of high-resolution manometry (HRM). This technique was recently (2014) used in a study of 10 healthy humans and revealed a new understanding in the propagating motor pattern of the human colon [133].

Bottom Line: This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications.The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement.This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas.

View Article: PubMed Central - PubMed

Affiliation: Optical Fibre Sensors Research Centre, University of Limerick, Limerick, Ireland. Sven@Poeggel.eu.

ABSTRACT
This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas.

Show MeSH
Related in: MedlinePlus