Limits...
Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.

Huang KL, Chiu CC, Chiu SY, Teng YJ, Hao SS - Sensors (Basel) (2015)

Bottom Line: The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images.A forward-looking camera is mounted on the upside of the aircraft's nose.Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical and Electronic Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan 33551, Taiwan. 1040510304@ndu.edu.tw.

ABSTRACT
The fastest and most economical method of acquiring terrain images is aerial photography. The use of unmanned aerial vehicles (UAVs) has been investigated for this task. However, UAVs present a range of challenges such as flight altitude maintenance. This paper reports a method that combines skyline detection with a stereo vision algorithm to enable the flight altitude of UAVs to be maintained. A monocular camera is mounted on the downside of the aircraft's nose to collect continuous ground images, and the relative altitude is obtained via a stereo vision algorithm from the velocity of the UAV. Image detection is used to obtain terrain images, and to measure the relative altitude from the ground to the UAV. The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images. A forward-looking camera is mounted on the upside of the aircraft's nose. In combination with the skyline detection algorithm, this helps the aircraft to maintain a stable flight pattern. Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path.

No MeSH data available.


Experimental results from the proposed system.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541911&req=5

sensors-15-16848-f011: Experimental results from the proposed system.

Mentions: Figure 11 shows the test site and the experimental results of the flying test. The flying direction of the UAV is from east to west. From top to bottom, Figure 11 shows the combined image with image stitching, a photo of the test site, the terrain altitude, and the detected relative altitude. The combined image in Figure 11 combines the 370 images using photo stitching software to show the flight path. The combined image is misaligned, because the flying direction is influenced by the cross-wind.


Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.

Huang KL, Chiu CC, Chiu SY, Teng YJ, Hao SS - Sensors (Basel) (2015)

Experimental results from the proposed system.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541911&req=5

sensors-15-16848-f011: Experimental results from the proposed system.
Mentions: Figure 11 shows the test site and the experimental results of the flying test. The flying direction of the UAV is from east to west. From top to bottom, Figure 11 shows the combined image with image stitching, a photo of the test site, the terrain altitude, and the detected relative altitude. The combined image in Figure 11 combines the 370 images using photo stitching software to show the flight path. The combined image is misaligned, because the flying direction is influenced by the cross-wind.

Bottom Line: The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images.A forward-looking camera is mounted on the upside of the aircraft's nose.Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical and Electronic Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan 33551, Taiwan. 1040510304@ndu.edu.tw.

ABSTRACT
The fastest and most economical method of acquiring terrain images is aerial photography. The use of unmanned aerial vehicles (UAVs) has been investigated for this task. However, UAVs present a range of challenges such as flight altitude maintenance. This paper reports a method that combines skyline detection with a stereo vision algorithm to enable the flight altitude of UAVs to be maintained. A monocular camera is mounted on the downside of the aircraft's nose to collect continuous ground images, and the relative altitude is obtained via a stereo vision algorithm from the velocity of the UAV. Image detection is used to obtain terrain images, and to measure the relative altitude from the ground to the UAV. The UAV flight system can be set to fly at a fixed and relatively low altitude to obtain the same resolution of ground images. A forward-looking camera is mounted on the upside of the aircraft's nose. In combination with the skyline detection algorithm, this helps the aircraft to maintain a stable flight pattern. Experimental results show that the proposed system enables UAVs to obtain terrain images at constant resolution, and to detect the relative altitude along the flight path.

No MeSH data available.