Limits...
Towards the Development of a Smart Flying Sensor: Illustration in the Field of Precision Agriculture.

Hernandez A, Murcia H, Copot C, De Keyser R - Sensors (Basel) (2015)

Bottom Line: Sensing is an important element to quantify productivity, product quality and to make decisions.Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC).Experimental results on a lab-scale system validate the effectiveness of the proposed methodology.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical Energy, Systems and Automation (EeSA), Ghent University, 9000 Ghent, Belgium. Andres.Hernandez@ugent.be.

ABSTRACT
Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology.

No MeSH data available.


3D profile obtained experimentally using the smart flying sensor and two pictures.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541901&req=5

f15-sensors-15-16688: 3D profile obtained experimentally using the smart flying sensor and two pictures.

Mentions: A trade-off between accuracy and update time of the 3D map must be considered. Although using four images (four POV) has the advantage that a more accurate profile is obtained, this also implies a longer update time, since the UAV will require more time to take all pictures. A possible solution consists of using only two pictures, for which a good approximation of the 3D map can be computed, as depicted in Figure 15.


Towards the Development of a Smart Flying Sensor: Illustration in the Field of Precision Agriculture.

Hernandez A, Murcia H, Copot C, De Keyser R - Sensors (Basel) (2015)

3D profile obtained experimentally using the smart flying sensor and two pictures.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541901&req=5

f15-sensors-15-16688: 3D profile obtained experimentally using the smart flying sensor and two pictures.
Mentions: A trade-off between accuracy and update time of the 3D map must be considered. Although using four images (four POV) has the advantage that a more accurate profile is obtained, this also implies a longer update time, since the UAV will require more time to take all pictures. A possible solution consists of using only two pictures, for which a good approximation of the 3D map can be computed, as depicted in Figure 15.

Bottom Line: Sensing is an important element to quantify productivity, product quality and to make decisions.Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC).Experimental results on a lab-scale system validate the effectiveness of the proposed methodology.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical Energy, Systems and Automation (EeSA), Ghent University, 9000 Ghent, Belgium. Andres.Hernandez@ugent.be.

ABSTRACT
Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology.

No MeSH data available.