Limits...
FBG Interrogation Method with High Resolution and Response Speed Based on a Reflective-Matched FBG Scheme.

Cui J, Hu Y, Feng K, Li J, Tan J - Sensors (Basel) (2015)

Bottom Line: To satisfy the measurement requirements of optical and electric signal processing, a well- designed acquisition circuit board is prepared, and experiments on the performance of the interrogation method are carried out.The experimental results indicate that the optical power resolution of the acquisition circuit border is better than 8 pW, and the stability of the interrogation method with the mechanical adjustment can reach 0.06%.Moreover, the nonlinearity of the interrogation method is 3.3% in the measurable range of 60 pm; the influence of temperature is significantly reduced to 9.5%; the wavelength resolution and response speed can achieve values of 0.3 pm and 500 kHz, respectively.

View Article: PubMed Central - PubMed

Affiliation: Institute of Ultra-precision Optoelectronic Instrument Engineering, Science Park, Harbin Institute of Technology, No. 2 Yikuang Street, Nangang District, Harbin 150080, China. cuijiwen@hit.edu.cn.

ABSTRACT
In this paper, a high resolution and response speed interrogation method based on a reflective-matched Fiber Bragg Grating (FBG) scheme is investigated in detail. The nonlinear problem of the reflective-matched FBG sensing interrogation scheme is solved by establishing and optimizing the mathematical model. A mechanical adjustment to optimize the interrogation method by tuning the central wavelength of the reference FBG to improve the stability and anti-temperature perturbation performance is investigated. To satisfy the measurement requirements of optical and electric signal processing, a well- designed acquisition circuit board is prepared, and experiments on the performance of the interrogation method are carried out. The experimental results indicate that the optical power resolution of the acquisition circuit border is better than 8 pW, and the stability of the interrogation method with the mechanical adjustment can reach 0.06%. Moreover, the nonlinearity of the interrogation method is 3.3% in the measurable range of 60 pm; the influence of temperature is significantly reduced to 9.5%; the wavelength resolution and response speed can achieve values of 0.3 pm and 500 kHz, respectively.

Show MeSH
Experimental result of the linearity of the interrogation method: (a) the optical power ratio on a large scale; (b) the optical power ratio on available measurement scale.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541891&req=5

sensors-15-16516-f012: Experimental result of the linearity of the interrogation method: (a) the optical power ratio on a large scale; (b) the optical power ratio on available measurement scale.

Mentions: The seFBG signal is generated by a twin FBG probe with a radial touch of a nano stage working in servo mode [2]. The seFBG is bent through the radial contact to get the linear variation of central wavelength as shown in Figure 11. Figure 12a shows the optical power ratio of the overlapping reflection spectrum power of the seFBG and reFBG to the reflection spectrum power of the seFBG on a large scale, while Figure 12b shows the available measurement scale.


FBG Interrogation Method with High Resolution and Response Speed Based on a Reflective-Matched FBG Scheme.

Cui J, Hu Y, Feng K, Li J, Tan J - Sensors (Basel) (2015)

Experimental result of the linearity of the interrogation method: (a) the optical power ratio on a large scale; (b) the optical power ratio on available measurement scale.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541891&req=5

sensors-15-16516-f012: Experimental result of the linearity of the interrogation method: (a) the optical power ratio on a large scale; (b) the optical power ratio on available measurement scale.
Mentions: The seFBG signal is generated by a twin FBG probe with a radial touch of a nano stage working in servo mode [2]. The seFBG is bent through the radial contact to get the linear variation of central wavelength as shown in Figure 11. Figure 12a shows the optical power ratio of the overlapping reflection spectrum power of the seFBG and reFBG to the reflection spectrum power of the seFBG on a large scale, while Figure 12b shows the available measurement scale.

Bottom Line: To satisfy the measurement requirements of optical and electric signal processing, a well- designed acquisition circuit board is prepared, and experiments on the performance of the interrogation method are carried out.The experimental results indicate that the optical power resolution of the acquisition circuit border is better than 8 pW, and the stability of the interrogation method with the mechanical adjustment can reach 0.06%.Moreover, the nonlinearity of the interrogation method is 3.3% in the measurable range of 60 pm; the influence of temperature is significantly reduced to 9.5%; the wavelength resolution and response speed can achieve values of 0.3 pm and 500 kHz, respectively.

View Article: PubMed Central - PubMed

Affiliation: Institute of Ultra-precision Optoelectronic Instrument Engineering, Science Park, Harbin Institute of Technology, No. 2 Yikuang Street, Nangang District, Harbin 150080, China. cuijiwen@hit.edu.cn.

ABSTRACT
In this paper, a high resolution and response speed interrogation method based on a reflective-matched Fiber Bragg Grating (FBG) scheme is investigated in detail. The nonlinear problem of the reflective-matched FBG sensing interrogation scheme is solved by establishing and optimizing the mathematical model. A mechanical adjustment to optimize the interrogation method by tuning the central wavelength of the reference FBG to improve the stability and anti-temperature perturbation performance is investigated. To satisfy the measurement requirements of optical and electric signal processing, a well- designed acquisition circuit board is prepared, and experiments on the performance of the interrogation method are carried out. The experimental results indicate that the optical power resolution of the acquisition circuit border is better than 8 pW, and the stability of the interrogation method with the mechanical adjustment can reach 0.06%. Moreover, the nonlinearity of the interrogation method is 3.3% in the measurable range of 60 pm; the influence of temperature is significantly reduced to 9.5%; the wavelength resolution and response speed can achieve values of 0.3 pm and 500 kHz, respectively.

Show MeSH