Limits...
HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs.

Raharijaona T, Mignon P, Juston R, Kerhuel L, Viollet S - Sensors (Basel) (2015)

Bottom Line: Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch.The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons.Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

View Article: PubMed Central - PubMed

Affiliation: Aix-Marseille Université, ISM UMR 7287, 13288, Marseille Cedex 09, France. thibaut.raharijaona@univ-amu.fr.

ABSTRACT
An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz) with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

No MeSH data available.


Related in: MedlinePlus

Experimental recording of the dynamic response of the demodulated output signal SPh1 at 1 kHz. The settling time at 95% t95% is equal to 7.25 ms, and the rise time tm (the time required for the response to rise from 5% to 95% of its final value) is equal to 1.6 ms.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541889&req=5

f7-sensors-15-16484: Experimental recording of the dynamic response of the demodulated output signal SPh1 at 1 kHz. The settling time at 95% t95% is equal to 7.25 ms, and the rise time tm (the time required for the response to rise from 5% to 95% of its final value) is equal to 1.6 ms.

Mentions: To characterize the dynamic response of the HyperCube sensor, we measured the demodulated output signal of a photosensor at 1 kHz in response to a step input. We turned on a modulated IR LED placed in front of the photosensor Ph1, and we measured the demodulated output signal by means of the board, as shown in Figure 5. To precisely know the step time, the power input of the modulation electronic board (+3.3 V) is connected to a digital input of the microcontroller. The sampling frequency is 10 kHz. As depicted in Figure 7, the settling time t95% is equal to 7.25 ms, and the rise time tm is equal to 1.6 ms. Therefore, given these dynamic properties, the use of the HyperCube sensor could be relevant for MAV applications.


HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs.

Raharijaona T, Mignon P, Juston R, Kerhuel L, Viollet S - Sensors (Basel) (2015)

Experimental recording of the dynamic response of the demodulated output signal SPh1 at 1 kHz. The settling time at 95% t95% is equal to 7.25 ms, and the rise time tm (the time required for the response to rise from 5% to 95% of its final value) is equal to 1.6 ms.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541889&req=5

f7-sensors-15-16484: Experimental recording of the dynamic response of the demodulated output signal SPh1 at 1 kHz. The settling time at 95% t95% is equal to 7.25 ms, and the rise time tm (the time required for the response to rise from 5% to 95% of its final value) is equal to 1.6 ms.
Mentions: To characterize the dynamic response of the HyperCube sensor, we measured the demodulated output signal of a photosensor at 1 kHz in response to a step input. We turned on a modulated IR LED placed in front of the photosensor Ph1, and we measured the demodulated output signal by means of the board, as shown in Figure 5. To precisely know the step time, the power input of the modulation electronic board (+3.3 V) is connected to a digital input of the microcontroller. The sampling frequency is 10 kHz. As depicted in Figure 7, the settling time t95% is equal to 7.25 ms, and the rise time tm is equal to 1.6 ms. Therefore, given these dynamic properties, the use of the HyperCube sensor could be relevant for MAV applications.

Bottom Line: Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch.The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons.Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

View Article: PubMed Central - PubMed

Affiliation: Aix-Marseille Université, ISM UMR 7287, 13288, Marseille Cedex 09, France. thibaut.raharijaona@univ-amu.fr.

ABSTRACT
An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz) with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

No MeSH data available.


Related in: MedlinePlus