Limits...
HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs.

Raharijaona T, Mignon P, Juston R, Kerhuel L, Viollet S - Sensors (Basel) (2015)

Bottom Line: Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch.The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons.Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

View Article: PubMed Central - PubMed

Affiliation: Aix-Marseille Université, ISM UMR 7287, 13288, Marseille Cedex 09, France. thibaut.raharijaona@univ-amu.fr.

ABSTRACT
An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz) with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

No MeSH data available.


Related in: MedlinePlus

Custom-made electronic board for the frequency modulation of the IR LEDs. It produces three separate signals that flicker at 1 kHz, 3.5 kHz and 11.5 kHz, sent to the three IR LEDs of the object to be located.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541889&req=5

f4-sensors-15-16484: Custom-made electronic board for the frequency modulation of the IR LEDs. It produces three separate signals that flicker at 1 kHz, 3.5 kHz and 11.5 kHz, sent to the three IR LEDs of the object to be located.

Mentions: Each IR LED signal is modulated at a specific frequency fi. The modulation is provided by a custom-made electronic board (Figure 4). The latter was designed to provide one specific modulation frequency fi to each LED, such that f1 = 1 kHz, f2 = 3.5 kHz, f3 = 11.5 kHz for the three separate IR LED emitters of the pattern. Then, an additional custom-made processing board (Figure 5) achieved the analog signal demodulation for each frequency fi. To summarize, two electronic boards have been designed: the modulation of the LEDs is performed by the first board in Figure 4, and the second electronic board in Figure 5 performs the analog demodulation and the digital visual processing.


HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs.

Raharijaona T, Mignon P, Juston R, Kerhuel L, Viollet S - Sensors (Basel) (2015)

Custom-made electronic board for the frequency modulation of the IR LEDs. It produces three separate signals that flicker at 1 kHz, 3.5 kHz and 11.5 kHz, sent to the three IR LEDs of the object to be located.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541889&req=5

f4-sensors-15-16484: Custom-made electronic board for the frequency modulation of the IR LEDs. It produces three separate signals that flicker at 1 kHz, 3.5 kHz and 11.5 kHz, sent to the three IR LEDs of the object to be located.
Mentions: Each IR LED signal is modulated at a specific frequency fi. The modulation is provided by a custom-made electronic board (Figure 4). The latter was designed to provide one specific modulation frequency fi to each LED, such that f1 = 1 kHz, f2 = 3.5 kHz, f3 = 11.5 kHz for the three separate IR LED emitters of the pattern. Then, an additional custom-made processing board (Figure 5) achieved the analog signal demodulation for each frequency fi. To summarize, two electronic boards have been designed: the modulation of the LEDs is performed by the first board in Figure 4, and the second electronic board in Figure 5 performs the analog demodulation and the digital visual processing.

Bottom Line: Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch.The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons.Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

View Article: PubMed Central - PubMed

Affiliation: Aix-Marseille Université, ISM UMR 7287, 13288, Marseille Cedex 09, France. thibaut.raharijaona@univ-amu.fr.

ABSTRACT
An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz) with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

No MeSH data available.


Related in: MedlinePlus