Limits...
HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs.

Raharijaona T, Mignon P, Juston R, Kerhuel L, Viollet S - Sensors (Basel) (2015)

Bottom Line: Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch.The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons.Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

View Article: PubMed Central - PubMed

Affiliation: Aix-Marseille Université, ISM UMR 7287, 13288, Marseille Cedex 09, France. thibaut.raharijaona@univ-amu.fr.

ABSTRACT
An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz) with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

No MeSH data available.


Related in: MedlinePlus

(A) Position estimation for a circular trajectory with a radius of 50 mm in the XY plane. Note that the absolute value of the position error is lower than 1 cm and that the standard deviation is about 3 cm; We also note that the noise is more important for the experiments at 3.5 kHz (B) and 11.5 kHz (C).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541889&req=5

f13-sensors-15-16484: (A) Position estimation for a circular trajectory with a radius of 50 mm in the XY plane. Note that the absolute value of the position error is lower than 1 cm and that the standard deviation is about 3 cm; We also note that the noise is more important for the experiments at 3.5 kHz (B) and 11.5 kHz (C).

Mentions: We compared the estimation to HyperCube positions assessed by the tracking system for three different modulation frequencies. For the IR LED that flickers at 1 kHz, Figure 13A shows the plots of the reference trajectory as a dashed line and the trajectory depicted by HyperCube as a solid line. The trajectory is a circular path with a radius of 50 mm in the XY plane with ZLED = 300 mm. The distance between reference and estimated trajectories was also plotted. The histogram of the error gives a mean value μ = 1.6 mm and a standard deviation σ = 2.8 mm. We noted that the noise at 1 kHz for the demodulation was lower than the noise at 3.5 kHz and 11.5 kHz, as shown in Figure 13B,C. The higher levels of noise at 3.5 kHz and 11.5 kHz than the one at 1 kHz are due to the use of different operational amplifiers (TI OPA4322 and TIOPA4342) for the analog demodulation. Figure 13A-C highlight that the HyperCube sensor provides useful measurements to accurately estimate the dynamic relative position of an IR LED in the XY plane.


HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs.

Raharijaona T, Mignon P, Juston R, Kerhuel L, Viollet S - Sensors (Basel) (2015)

(A) Position estimation for a circular trajectory with a radius of 50 mm in the XY plane. Note that the absolute value of the position error is lower than 1 cm and that the standard deviation is about 3 cm; We also note that the noise is more important for the experiments at 3.5 kHz (B) and 11.5 kHz (C).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541889&req=5

f13-sensors-15-16484: (A) Position estimation for a circular trajectory with a radius of 50 mm in the XY plane. Note that the absolute value of the position error is lower than 1 cm and that the standard deviation is about 3 cm; We also note that the noise is more important for the experiments at 3.5 kHz (B) and 11.5 kHz (C).
Mentions: We compared the estimation to HyperCube positions assessed by the tracking system for three different modulation frequencies. For the IR LED that flickers at 1 kHz, Figure 13A shows the plots of the reference trajectory as a dashed line and the trajectory depicted by HyperCube as a solid line. The trajectory is a circular path with a radius of 50 mm in the XY plane with ZLED = 300 mm. The distance between reference and estimated trajectories was also plotted. The histogram of the error gives a mean value μ = 1.6 mm and a standard deviation σ = 2.8 mm. We noted that the noise at 1 kHz for the demodulation was lower than the noise at 3.5 kHz and 11.5 kHz, as shown in Figure 13B,C. The higher levels of noise at 3.5 kHz and 11.5 kHz than the one at 1 kHz are due to the use of different operational amplifiers (TI OPA4322 and TIOPA4342) for the analog demodulation. Figure 13A-C highlight that the HyperCube sensor provides useful measurements to accurately estimate the dynamic relative position of an IR LED in the XY plane.

Bottom Line: Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch.The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons.Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

View Article: PubMed Central - PubMed

Affiliation: Aix-Marseille Université, ISM UMR 7287, 13288, Marseille Cedex 09, France. thibaut.raharijaona@univ-amu.fr.

ABSTRACT
An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz) with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

No MeSH data available.


Related in: MedlinePlus