Limits...
Curved Microneedle Array-Based sEMG Electrode for Robust Long-Term Measurements and High Selectivity.

Kim M, Kim T, Kim DS, Chung WK - Sensors (Basel) (2015)

Bottom Line: However, conventional electrodes are not appropriate for long-term measurements and are easily influenced by the environment, so the range of applications of sEMG is limited.The results show that the proposed electrode is robust to perspiration and can maintain a high-quality measuring ability for over 8 h.The proposed electrode also has high selectivity for motion compared with a commercial wet electrode and dry electrode.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea. minjaekim@postech.ac.kr.

ABSTRACT
Surface electromyography is widely used in many fields to infer human intention. However, conventional electrodes are not appropriate for long-term measurements and are easily influenced by the environment, so the range of applications of sEMG is limited. In this paper, we propose a flexible band-integrated, curved microneedle array electrode for robust long-term measurements, high selectivity, and easy applicability. Signal quality, in terms of long-term usability and sensitivity to perspiration, was investigated. Its motion-discriminating performance was also evaluated. The results show that the proposed electrode is robust to perspiration and can maintain a high-quality measuring ability for over 8 h. The proposed electrode also has high selectivity for motion compared with a commercial wet electrode and dry electrode.

No MeSH data available.


Electrical equivalent circuit models of the standard wet and MNA electrodes. (a) Wet electrode model; (b) MNA electrode model.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541878&req=5

f2-sensors-15-16265: Electrical equivalent circuit models of the standard wet and MNA electrodes. (a) Wet electrode model; (b) MNA electrode model.

Mentions: When the electrode contacts the skin, ionic currents of muscle signals are converted into electric currents in the electrodes. The paths of these currents can be expressed as electrical equivalent circuit models (Figure 2).


Curved Microneedle Array-Based sEMG Electrode for Robust Long-Term Measurements and High Selectivity.

Kim M, Kim T, Kim DS, Chung WK - Sensors (Basel) (2015)

Electrical equivalent circuit models of the standard wet and MNA electrodes. (a) Wet electrode model; (b) MNA electrode model.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541878&req=5

f2-sensors-15-16265: Electrical equivalent circuit models of the standard wet and MNA electrodes. (a) Wet electrode model; (b) MNA electrode model.
Mentions: When the electrode contacts the skin, ionic currents of muscle signals are converted into electric currents in the electrodes. The paths of these currents can be expressed as electrical equivalent circuit models (Figure 2).

Bottom Line: However, conventional electrodes are not appropriate for long-term measurements and are easily influenced by the environment, so the range of applications of sEMG is limited.The results show that the proposed electrode is robust to perspiration and can maintain a high-quality measuring ability for over 8 h.The proposed electrode also has high selectivity for motion compared with a commercial wet electrode and dry electrode.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea. minjaekim@postech.ac.kr.

ABSTRACT
Surface electromyography is widely used in many fields to infer human intention. However, conventional electrodes are not appropriate for long-term measurements and are easily influenced by the environment, so the range of applications of sEMG is limited. In this paper, we propose a flexible band-integrated, curved microneedle array electrode for robust long-term measurements, high selectivity, and easy applicability. Signal quality, in terms of long-term usability and sensitivity to perspiration, was investigated. Its motion-discriminating performance was also evaluated. The results show that the proposed electrode is robust to perspiration and can maintain a high-quality measuring ability for over 8 h. The proposed electrode also has high selectivity for motion compared with a commercial wet electrode and dry electrode.

No MeSH data available.