Limits...
Modular Energy-Efficient and Robust Paradigms for a Disaster-Recovery Process over Wireless Sensor Networks.

Razaque A, Elleithy K - Sensors (Basel) (2015)

Bottom Line: The lack of robust and efficient paradigms causes a reduction in the provision of quality of service (QoS) and additional energy consumption.O-MAC uses an optimized data frame format that reduces the channel access time and provides faster data delivery over the medium.The simulation results indicate that O-MAC with PT produced better outcomes.

View Article: PubMed Central - PubMed

Affiliation: Department of Computer Science, University of Bridgeport, 126 Park Avenue, Bridgeport, CT 06604, USA. arazaque@my.bridgeport.edu.

ABSTRACT
Robust paradigms are a necessity, particularly for emerging wireless sensor network (WSN) applications. The lack of robust and efficient paradigms causes a reduction in the provision of quality of service (QoS) and additional energy consumption. In this paper, we introduce modular energy-efficient and robust paradigms that involve two archetypes: (1) the operational medium access control (O-MAC) hybrid protocol and (2) the pheromone termite (PT) model. The O-MAC protocol controls overhearing and congestion and increases the throughput, reduces the latency and extends the network lifetime. O-MAC uses an optimized data frame format that reduces the channel access time and provides faster data delivery over the medium. Furthermore, O-MAC uses a novel randomization function that avoids channel collisions. The PT model provides robust routing for single and multiple links and includes two new significant features: (1) determining the packet generation rate to avoid congestion and (2) pheromone sensitivity to determine the link capacity prior to sending the packets on each link. The state-of-the-art research in this work is based on improving both the QoS and energy efficiency. To determine the strength of O-MAC with the PT model; we have generated and simulated a disaster recovery scenario using a network simulator (ns-3.10) that monitors the activities of disaster recovery staff; hospital staff and disaster victims brought into the hospital. Moreover; the proposed paradigm can be used for general purpose applications. Finally; the QoS metrics of the O-MAC and PT paradigms are evaluated and compared with other known hybrid protocols involving the MAC and routing features. The simulation results indicate that O-MAC with PT produced better outcomes.

No MeSH data available.


Related in: MedlinePlus

Routing process of the pheromone termite model.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541873&req=5

sensors-15-16162-f006: Routing process of the pheromone termite model.

Mentions: Figure 6 depicts the search process of the termite. When a packet is received at node “N” from the previous hop “”, that node could be a source node. Thus, the source, pheromone decay and pheromone are added to link . Therefore, node “N” consists of A, V, W, X, and Y neighbor nodes. The shortest link to reach the desired destination node is . The possible links to forward the data to destination C are , , and , but is the shortest link to reach the destination. Thus, the entire path-following process helps find the shortest path from the source to the destination with minimal overhead.


Modular Energy-Efficient and Robust Paradigms for a Disaster-Recovery Process over Wireless Sensor Networks.

Razaque A, Elleithy K - Sensors (Basel) (2015)

Routing process of the pheromone termite model.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541873&req=5

sensors-15-16162-f006: Routing process of the pheromone termite model.
Mentions: Figure 6 depicts the search process of the termite. When a packet is received at node “N” from the previous hop “”, that node could be a source node. Thus, the source, pheromone decay and pheromone are added to link . Therefore, node “N” consists of A, V, W, X, and Y neighbor nodes. The shortest link to reach the desired destination node is . The possible links to forward the data to destination C are , , and , but is the shortest link to reach the destination. Thus, the entire path-following process helps find the shortest path from the source to the destination with minimal overhead.

Bottom Line: The lack of robust and efficient paradigms causes a reduction in the provision of quality of service (QoS) and additional energy consumption.O-MAC uses an optimized data frame format that reduces the channel access time and provides faster data delivery over the medium.The simulation results indicate that O-MAC with PT produced better outcomes.

View Article: PubMed Central - PubMed

Affiliation: Department of Computer Science, University of Bridgeport, 126 Park Avenue, Bridgeport, CT 06604, USA. arazaque@my.bridgeport.edu.

ABSTRACT
Robust paradigms are a necessity, particularly for emerging wireless sensor network (WSN) applications. The lack of robust and efficient paradigms causes a reduction in the provision of quality of service (QoS) and additional energy consumption. In this paper, we introduce modular energy-efficient and robust paradigms that involve two archetypes: (1) the operational medium access control (O-MAC) hybrid protocol and (2) the pheromone termite (PT) model. The O-MAC protocol controls overhearing and congestion and increases the throughput, reduces the latency and extends the network lifetime. O-MAC uses an optimized data frame format that reduces the channel access time and provides faster data delivery over the medium. Furthermore, O-MAC uses a novel randomization function that avoids channel collisions. The PT model provides robust routing for single and multiple links and includes two new significant features: (1) determining the packet generation rate to avoid congestion and (2) pheromone sensitivity to determine the link capacity prior to sending the packets on each link. The state-of-the-art research in this work is based on improving both the QoS and energy efficiency. To determine the strength of O-MAC with the PT model; we have generated and simulated a disaster recovery scenario using a network simulator (ns-3.10) that monitors the activities of disaster recovery staff; hospital staff and disaster victims brought into the hospital. Moreover; the proposed paradigm can be used for general purpose applications. Finally; the QoS metrics of the O-MAC and PT paradigms are evaluated and compared with other known hybrid protocols involving the MAC and routing features. The simulation results indicate that O-MAC with PT produced better outcomes.

No MeSH data available.


Related in: MedlinePlus