Limits...
A Novel Permanent Magnetic Angular Acceleration Sensor.

Zhao H, Feng H - Sensors (Basel) (2015)

Bottom Line: Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect.The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s(-2)).Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

View Article: PubMed Central - PubMed

Affiliation: College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China. zhaohao204@163.com.

ABSTRACT
Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s(-2)). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

No MeSH data available.


Connection diagram of a single-phase asynchronous motor angular acceleration testing.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541871&req=5

sensors-15-16136-f018: Connection diagram of a single-phase asynchronous motor angular acceleration testing.

Mentions: The rotating machine is a single-phase asynchronous motor with PN = 120 W, UN = 220 V, IN = 1 A, and nN = 1450 r/min. The cup-shaped rotor of sensor is connected with the rotating system coaxially. As shown in Figure 18, different components are labeled as (13) single-phase asynchronous motor, (14) coupling, (15) angular acceleration sensor and (16) digital oscilloscope. The induced voltage of angular acceleration sensor output winding are shown in Figure 19.


A Novel Permanent Magnetic Angular Acceleration Sensor.

Zhao H, Feng H - Sensors (Basel) (2015)

Connection diagram of a single-phase asynchronous motor angular acceleration testing.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541871&req=5

sensors-15-16136-f018: Connection diagram of a single-phase asynchronous motor angular acceleration testing.
Mentions: The rotating machine is a single-phase asynchronous motor with PN = 120 W, UN = 220 V, IN = 1 A, and nN = 1450 r/min. The cup-shaped rotor of sensor is connected with the rotating system coaxially. As shown in Figure 18, different components are labeled as (13) single-phase asynchronous motor, (14) coupling, (15) angular acceleration sensor and (16) digital oscilloscope. The induced voltage of angular acceleration sensor output winding are shown in Figure 19.

Bottom Line: Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect.The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s(-2)).Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

View Article: PubMed Central - PubMed

Affiliation: College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China. zhaohao204@163.com.

ABSTRACT
Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s(-2)). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

No MeSH data available.