Limits...
A Novel Permanent Magnetic Angular Acceleration Sensor.

Zhao H, Feng H - Sensors (Basel) (2015)

Bottom Line: Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect.The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s(-2)).Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

View Article: PubMed Central - PubMed

Affiliation: College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China. zhaohao204@163.com.

ABSTRACT
Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s(-2)). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

No MeSH data available.


Density cloud distribution of flux Ф.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541871&req=5

sensors-15-16136-f012: Density cloud distribution of flux Ф.

Mentions: The cup-shaped rotor can be regarded as a squirrel-cage rotor with a large number of bars as shown in Figure 10. The distribution of Ф is shown in Figure 11, which is consistent with the result shown in Figure 6, and the density cloud distribution of Ф is shown in Figure 12.


A Novel Permanent Magnetic Angular Acceleration Sensor.

Zhao H, Feng H - Sensors (Basel) (2015)

Density cloud distribution of flux Ф.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541871&req=5

sensors-15-16136-f012: Density cloud distribution of flux Ф.
Mentions: The cup-shaped rotor can be regarded as a squirrel-cage rotor with a large number of bars as shown in Figure 10. The distribution of Ф is shown in Figure 11, which is consistent with the result shown in Figure 6, and the density cloud distribution of Ф is shown in Figure 12.

Bottom Line: Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect.The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s(-2)).Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

View Article: PubMed Central - PubMed

Affiliation: College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China. zhaohao204@163.com.

ABSTRACT
Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s(-2)). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

No MeSH data available.