Limits...
An Electromagnetic Sensor with a Metamaterial Lens for Nondestructive Evaluation of Composite Materials.

Savin A, Steigmann R, Bruma A, Šturm R - Sensors (Basel) (2015)

Bottom Line: These structures can serve as electromagnetic flux concentrators in the radiofrequency range.The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz) polarized electromagnetic field.The flaws can be localized with spatial resolution better than λ/2000.

View Article: PubMed Central - PubMed

Affiliation: Nondestructive Testing Department, National Institute of R&D for Technical Physics, 47 D. Mangeron Blvd, 700050 Iasi, Romania. asavin@phys-iasi.ro.

ABSTRACT
This paper proposes the study and implementation of a sensor with a metamaterial (MM) lens in electromagnetic nondestructive evaluation (eNDE). Thus, the use of a new type of MM, named Conical Swiss Rolls (CSR) has been proposed. These structures can serve as electromagnetic flux concentrators in the radiofrequency range. As a direct application, plates of composite materials with carbon fibers woven as reinforcement and polyphenylene sulphide as matrix with delaminations due to low energy impacts were examined. The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz) polarized electromagnetic field. The MM lens allows the transmission and intensification of evanescent waves. The characteristics of carbon fibers woven structure became visible and delaminations are clearly emphasized. The flaws can be localized with spatial resolution better than λ/2000.

No MeSH data available.


Related in: MedlinePlus

The image through an aperture due Fresnel diffraction.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541860&req=5

sensors-15-15903-f008: The image through an aperture due Fresnel diffraction.

Mentions: At the scanning of the selected region of sample, the image delivered by the assembly sensor-equipment is amplified. This is due to the diffraction on the aperture of the evanescent waves generated by scattering on the woven carbon fibers. This assure that the structure of woven carbon fibers became clearly visible. Considering an object placed in the plane z = 0 and described by the function f0(x, y), at passing through an aperture, in the case of Fresnel diffraction (i.e., when the aperture is close to the object), the image obtained at the distance z from the object will be fz(x, y) and can be calculated using the algorithm presented in Figure 8, according to the principle of Fourier optics [54]:


An Electromagnetic Sensor with a Metamaterial Lens for Nondestructive Evaluation of Composite Materials.

Savin A, Steigmann R, Bruma A, Šturm R - Sensors (Basel) (2015)

The image through an aperture due Fresnel diffraction.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541860&req=5

sensors-15-15903-f008: The image through an aperture due Fresnel diffraction.
Mentions: At the scanning of the selected region of sample, the image delivered by the assembly sensor-equipment is amplified. This is due to the diffraction on the aperture of the evanescent waves generated by scattering on the woven carbon fibers. This assure that the structure of woven carbon fibers became clearly visible. Considering an object placed in the plane z = 0 and described by the function f0(x, y), at passing through an aperture, in the case of Fresnel diffraction (i.e., when the aperture is close to the object), the image obtained at the distance z from the object will be fz(x, y) and can be calculated using the algorithm presented in Figure 8, according to the principle of Fourier optics [54]:

Bottom Line: These structures can serve as electromagnetic flux concentrators in the radiofrequency range.The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz) polarized electromagnetic field.The flaws can be localized with spatial resolution better than λ/2000.

View Article: PubMed Central - PubMed

Affiliation: Nondestructive Testing Department, National Institute of R&D for Technical Physics, 47 D. Mangeron Blvd, 700050 Iasi, Romania. asavin@phys-iasi.ro.

ABSTRACT
This paper proposes the study and implementation of a sensor with a metamaterial (MM) lens in electromagnetic nondestructive evaluation (eNDE). Thus, the use of a new type of MM, named Conical Swiss Rolls (CSR) has been proposed. These structures can serve as electromagnetic flux concentrators in the radiofrequency range. As a direct application, plates of composite materials with carbon fibers woven as reinforcement and polyphenylene sulphide as matrix with delaminations due to low energy impacts were examined. The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz) polarized electromagnetic field. The MM lens allows the transmission and intensification of evanescent waves. The characteristics of carbon fibers woven structure became visible and delaminations are clearly emphasized. The flaws can be localized with spatial resolution better than λ/2000.

No MeSH data available.


Related in: MedlinePlus