Limits...
An Electromagnetic Sensor with a Metamaterial Lens for Nondestructive Evaluation of Composite Materials.

Savin A, Steigmann R, Bruma A, Šturm R - Sensors (Basel) (2015)

Bottom Line: These structures can serve as electromagnetic flux concentrators in the radiofrequency range.The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz) polarized electromagnetic field.The flaws can be localized with spatial resolution better than λ/2000.

View Article: PubMed Central - PubMed

Affiliation: Nondestructive Testing Department, National Institute of R&D for Technical Physics, 47 D. Mangeron Blvd, 700050 Iasi, Romania. asavin@phys-iasi.ro.

ABSTRACT
This paper proposes the study and implementation of a sensor with a metamaterial (MM) lens in electromagnetic nondestructive evaluation (eNDE). Thus, the use of a new type of MM, named Conical Swiss Rolls (CSR) has been proposed. These structures can serve as electromagnetic flux concentrators in the radiofrequency range. As a direct application, plates of composite materials with carbon fibers woven as reinforcement and polyphenylene sulphide as matrix with delaminations due to low energy impacts were examined. The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz) polarized electromagnetic field. The MM lens allows the transmission and intensification of evanescent waves. The characteristics of carbon fibers woven structure became visible and delaminations are clearly emphasized. The flaws can be localized with spatial resolution better than λ/2000.

No MeSH data available.


Related in: MedlinePlus

Schematic representation of the Sensor with MM lens.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541860&req=5

sensors-15-15903-f001: Schematic representation of the Sensor with MM lens.

Mentions: Electromagnetic sensors with MM lenses have been made in our case using conical Swiss rolls (CSR) [49], the operation frequencies depending both by the constitutive parameters of MM as well as by the polarization of the incident electromagnetic field (TEz or TMz). Figure 1 shows a sensor with MM developed by us [50,51,52]. As shown in [49], the electrical evanescent modes can be manipulated with a lens realized with CSR, functioning in the range of frequencies such that µeff is maximum. Moreover, working at frequency that assures µeff = −1 for the same lens, the magnetic evanescent modes can be focalized [31,32].


An Electromagnetic Sensor with a Metamaterial Lens for Nondestructive Evaluation of Composite Materials.

Savin A, Steigmann R, Bruma A, Šturm R - Sensors (Basel) (2015)

Schematic representation of the Sensor with MM lens.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541860&req=5

sensors-15-15903-f001: Schematic representation of the Sensor with MM lens.
Mentions: Electromagnetic sensors with MM lenses have been made in our case using conical Swiss rolls (CSR) [49], the operation frequencies depending both by the constitutive parameters of MM as well as by the polarization of the incident electromagnetic field (TEz or TMz). Figure 1 shows a sensor with MM developed by us [50,51,52]. As shown in [49], the electrical evanescent modes can be manipulated with a lens realized with CSR, functioning in the range of frequencies such that µeff is maximum. Moreover, working at frequency that assures µeff = −1 for the same lens, the magnetic evanescent modes can be focalized [31,32].

Bottom Line: These structures can serve as electromagnetic flux concentrators in the radiofrequency range.The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz) polarized electromagnetic field.The flaws can be localized with spatial resolution better than λ/2000.

View Article: PubMed Central - PubMed

Affiliation: Nondestructive Testing Department, National Institute of R&D for Technical Physics, 47 D. Mangeron Blvd, 700050 Iasi, Romania. asavin@phys-iasi.ro.

ABSTRACT
This paper proposes the study and implementation of a sensor with a metamaterial (MM) lens in electromagnetic nondestructive evaluation (eNDE). Thus, the use of a new type of MM, named Conical Swiss Rolls (CSR) has been proposed. These structures can serve as electromagnetic flux concentrators in the radiofrequency range. As a direct application, plates of composite materials with carbon fibers woven as reinforcement and polyphenylene sulphide as matrix with delaminations due to low energy impacts were examined. The evaluation method is based on the appearance of evanescent modes in the space between carbon fibers when the sample is excited with a transversal magnetic along z axis (TMz) polarized electromagnetic field. The MM lens allows the transmission and intensification of evanescent waves. The characteristics of carbon fibers woven structure became visible and delaminations are clearly emphasized. The flaws can be localized with spatial resolution better than λ/2000.

No MeSH data available.


Related in: MedlinePlus