Limits...
Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity.

Oh T, Lee D, Kim H, Myung H - Sensors (Basel) (2015)

Bottom Line: To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor.The experimental results were compared with those of the conventional GMappingapproach.The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach.

View Article: PubMed Central - PubMed

Affiliation: Urban Robotics Laboratory (URL), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Korea. buljaga@kaist.ac.kr.

ABSTRACT
Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach.

No MeSH data available.


Extracted features on the wall in the image. Red circles indicate the extracted image feature points. The white region in the figure is the extracted ground. The gray region in the right side figure is the wall.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541856&req=5

f3-sensors-15-15830: Extracted features on the wall in the image. Red circles indicate the extracted image feature points. The white region in the figure is the extracted ground. The gray region in the right side figure is the wall.

Mentions: Figure 3 shows an example using the proposed algorithm. It is shown that the wall surface and the ground surface are separated accurately using the depth data of the laser scanner, and the distance to the wall surface is also estimated at the same time, which enables estimation of the 3D coordinates of feature points extracted from the image.


Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity.

Oh T, Lee D, Kim H, Myung H - Sensors (Basel) (2015)

Extracted features on the wall in the image. Red circles indicate the extracted image feature points. The white region in the figure is the extracted ground. The gray region in the right side figure is the wall.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541856&req=5

f3-sensors-15-15830: Extracted features on the wall in the image. Red circles indicate the extracted image feature points. The white region in the figure is the extracted ground. The gray region in the right side figure is the wall.
Mentions: Figure 3 shows an example using the proposed algorithm. It is shown that the wall surface and the ground surface are separated accurately using the depth data of the laser scanner, and the distance to the wall surface is also estimated at the same time, which enables estimation of the 3D coordinates of feature points extracted from the image.

Bottom Line: To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor.The experimental results were compared with those of the conventional GMappingapproach.The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach.

View Article: PubMed Central - PubMed

Affiliation: Urban Robotics Laboratory (URL), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Korea. buljaga@kaist.ac.kr.

ABSTRACT
Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach.

No MeSH data available.