Limits...
Using Hand Grip Force as a Correlate of Longitudinal Acceleration Comfort for Rapid Transit Trains.

Guo B, Gan W, Fang W - Sensors (Basel) (2015)

Bottom Line: Longitudinal acceleration comfort is one of the essential metrics used to evaluate the ride comfort of train.The aim of this study was to investigate the effectiveness of using hand grip force as a correlate of longitudinal acceleration comfort of rapid transit trains.The feasibility and practicably of the model was verified by a field test.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, No.3 Shang Yuan Cun, Beijing 100044, China. byguo@bjtu.edu.cn.

ABSTRACT
Longitudinal acceleration comfort is one of the essential metrics used to evaluate the ride comfort of train. The aim of this study was to investigate the effectiveness of using hand grip force as a correlate of longitudinal acceleration comfort of rapid transit trains. In the paper, a motion simulation system was set up and a two-stage experiment was designed to investigate the role of the grip force on the longitudinal comfort of rapid transit trains. The results of the experiment show that the incremental grip force was linearly correlated with the longitudinal acceleration value, while the incremental grip force had no correlation with the direction of the longitudinal acceleration vector. The results also show that the effects of incremental grip force and acceleration duration on the longitudinal comfort of rapid transit trains were significant. Based on multiple regression analysis, a step function model was established to predict the longitudinal comfort of rapid transit trains using the incremental grip force and the acceleration duration. The feasibility and practicably of the model was verified by a field test. Furthermore, a comparative analysis shows that the motion simulation system and the grip force based model were valid to support the laboratory studies on the longitudinal comfort of rapid transit trains.

No MeSH data available.


Related in: MedlinePlus

Examples of visual simulation scene: (a) Front view; (b) Side view.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541853&req=5

sensors-15-15755-f003: Examples of visual simulation scene: (a) Front view; (b) Side view.

Mentions: A virtual simulation system was used to improve the user immersion of simulation scenarios. The virtual simulation system included visual simulation and audio simulation. Computer generated imagery (CGI) was used to create the visual scene. The scene included all the rapid transit system elements, such as tracks and subsidiary facilities of the rapid transit system, and landscapes on both track sides. Examples of the visual simulation scene for the experiment scenarios are shown in Figure 3.


Using Hand Grip Force as a Correlate of Longitudinal Acceleration Comfort for Rapid Transit Trains.

Guo B, Gan W, Fang W - Sensors (Basel) (2015)

Examples of visual simulation scene: (a) Front view; (b) Side view.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541853&req=5

sensors-15-15755-f003: Examples of visual simulation scene: (a) Front view; (b) Side view.
Mentions: A virtual simulation system was used to improve the user immersion of simulation scenarios. The virtual simulation system included visual simulation and audio simulation. Computer generated imagery (CGI) was used to create the visual scene. The scene included all the rapid transit system elements, such as tracks and subsidiary facilities of the rapid transit system, and landscapes on both track sides. Examples of the visual simulation scene for the experiment scenarios are shown in Figure 3.

Bottom Line: Longitudinal acceleration comfort is one of the essential metrics used to evaluate the ride comfort of train.The aim of this study was to investigate the effectiveness of using hand grip force as a correlate of longitudinal acceleration comfort of rapid transit trains.The feasibility and practicably of the model was verified by a field test.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, No.3 Shang Yuan Cun, Beijing 100044, China. byguo@bjtu.edu.cn.

ABSTRACT
Longitudinal acceleration comfort is one of the essential metrics used to evaluate the ride comfort of train. The aim of this study was to investigate the effectiveness of using hand grip force as a correlate of longitudinal acceleration comfort of rapid transit trains. In the paper, a motion simulation system was set up and a two-stage experiment was designed to investigate the role of the grip force on the longitudinal comfort of rapid transit trains. The results of the experiment show that the incremental grip force was linearly correlated with the longitudinal acceleration value, while the incremental grip force had no correlation with the direction of the longitudinal acceleration vector. The results also show that the effects of incremental grip force and acceleration duration on the longitudinal comfort of rapid transit trains were significant. Based on multiple regression analysis, a step function model was established to predict the longitudinal comfort of rapid transit trains using the incremental grip force and the acceleration duration. The feasibility and practicably of the model was verified by a field test. Furthermore, a comparative analysis shows that the motion simulation system and the grip force based model were valid to support the laboratory studies on the longitudinal comfort of rapid transit trains.

No MeSH data available.


Related in: MedlinePlus