Limits...
Sorting Olive Batches for the Milling Process Using Image Processing.

Aguilera Puerto D, Martínez Gila DM, Gámez García J, Gómez Ortega J - Sensors (Basel) (2015)

Bottom Line: The feature vector of the samples has been obtained on the basis of the olive image histograms.Moreover, different image preprocessing has been employed, and two classification techniques have been used: these are discriminant analysis and neural networks.The proposed methodology has been validated successfully, obtaining good classification results.

View Article: PubMed Central - PubMed

Affiliation: ANDALTEC, Plastic Technological Center, Martos, Jaén 23600, Spain. aguilera@andaltec.org.

ABSTRACT
The quality of virgin olive oil obtained in the milling process is directly bound to the characteristics of the olives. Hence, the correct classification of the different incoming olive batches is crucial to reach the maximum quality of the oil. The aim of this work is to provide an automatic inspection system, based on computer vision, and to classify automatically different batches of olives entering the milling process. The classification is based on the differentiation between ground and tree olives. For this purpose, three different species have been studied (Picudo, Picual and Hojiblanco). The samples have been obtained by picking the olives directly from the tree or from the ground. The feature vector of the samples has been obtained on the basis of the olive image histograms. Moreover, different image preprocessing has been employed, and two classification techniques have been used: these are discriminant analysis and neural networks. The proposed methodology has been validated successfully, obtaining good classification results.

No MeSH data available.


Proposed Fisher discriminant analysis (FDA) classifier diagram.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541852&req=5

f5-sensors-15-15738: Proposed Fisher discriminant analysis (FDA) classifier diagram.

Mentions: The next step for this classification algorithm is to fit the multivariate normal density of each group in the new space. Finally, for grading samples, the probability of belonging to each group (GSand GT) is obtained for each sample (Figure 5). The statistic toolbox of MATLAB® was employed, as well.


Sorting Olive Batches for the Milling Process Using Image Processing.

Aguilera Puerto D, Martínez Gila DM, Gámez García J, Gómez Ortega J - Sensors (Basel) (2015)

Proposed Fisher discriminant analysis (FDA) classifier diagram.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541852&req=5

f5-sensors-15-15738: Proposed Fisher discriminant analysis (FDA) classifier diagram.
Mentions: The next step for this classification algorithm is to fit the multivariate normal density of each group in the new space. Finally, for grading samples, the probability of belonging to each group (GSand GT) is obtained for each sample (Figure 5). The statistic toolbox of MATLAB® was employed, as well.

Bottom Line: The feature vector of the samples has been obtained on the basis of the olive image histograms.Moreover, different image preprocessing has been employed, and two classification techniques have been used: these are discriminant analysis and neural networks.The proposed methodology has been validated successfully, obtaining good classification results.

View Article: PubMed Central - PubMed

Affiliation: ANDALTEC, Plastic Technological Center, Martos, Jaén 23600, Spain. aguilera@andaltec.org.

ABSTRACT
The quality of virgin olive oil obtained in the milling process is directly bound to the characteristics of the olives. Hence, the correct classification of the different incoming olive batches is crucial to reach the maximum quality of the oil. The aim of this work is to provide an automatic inspection system, based on computer vision, and to classify automatically different batches of olives entering the milling process. The classification is based on the differentiation between ground and tree olives. For this purpose, three different species have been studied (Picudo, Picual and Hojiblanco). The samples have been obtained by picking the olives directly from the tree or from the ground. The feature vector of the samples has been obtained on the basis of the olive image histograms. Moreover, different image preprocessing has been employed, and two classification techniques have been used: these are discriminant analysis and neural networks. The proposed methodology has been validated successfully, obtaining good classification results.

No MeSH data available.