Limits...
New Hybrid Algorithms for Estimating Tree Stem Diameters at Breast Height Using a Two Dimensional Terrestrial Laser Scanner.

Kong J, Ding X, Liu J, Yan L, Wang J - Sensors (Basel) (2015)

Bottom Line: In this paper, a new algorithm to improve the accuracy of estimating diameter at breast height (DBH) for tree trunks in forest areas is proposed.Compared with previous works, this proposed method improves the accuracy of diameter estimation of trees significantly and effectively reduces the calculation time.Moreover, the experimental results indicate that this method is stable and suitable for the most challenging conditions, which has practical significance in improving the operating efficiency of forest harvester and reducing the risk of causing accidents.

View Article: PubMed Central - PubMed

Affiliation: School of Technology, Beijing Forestry University, Beijing 100083, China. kongjianlei_slgc@163.com.

ABSTRACT
In this paper, a new algorithm to improve the accuracy of estimating diameter at breast height (DBH) for tree trunks in forest areas is proposed. First, the information is collected by a two-dimensional terrestrial laser scanner (2DTLS), which emits laser pulses to generate a point cloud. After extraction and filtration, the laser point clusters of the trunks are obtained, which are optimized by an arithmetic means method. Then, an algebraic circle fitting algorithm in polar form is non-linearly optimized by the Levenberg-Marquardt method to form a new hybrid algorithm, which is used to acquire the diameters and positions of the trees. Compared with previous works, this proposed method improves the accuracy of diameter estimation of trees significantly and effectively reduces the calculation time. Moreover, the experimental results indicate that this method is stable and suitable for the most challenging conditions, which has practical significance in improving the operating efficiency of forest harvester and reducing the risk of causing accidents.

No MeSH data available.


The thirteen tree trunks and the indoor experimental scene.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541849&req=5

sensors-15-15661-f004: The thirteen tree trunks and the indoor experimental scene.

Mentions: In order to increase the target quantity, a further outside and indoor simulation is performed to reveal the influence of the distance and diameter on the diameter estimation error. For each abovementioned birch, the 2DTLS scanned all eight targets at a distance ranging from 2 m to 12.2 m every 0.6 m to the tree. Then, thirteen tree trunk sections with diameters in the range of 9–35 cm and lengths in the range of 40–49 cm are used in the indoor experiment. They are also placed at distances from the 2DTLS varying between 2 m and 12.1 m in 0.3 m steps. The diameter range and length of the trunks are recorded in Figure 4 and Table 1. In total, 378 sets of laser data integrating the outside and indoor measurement experiment are scanned to calculate the diameter error for a better statistical consequence.


New Hybrid Algorithms for Estimating Tree Stem Diameters at Breast Height Using a Two Dimensional Terrestrial Laser Scanner.

Kong J, Ding X, Liu J, Yan L, Wang J - Sensors (Basel) (2015)

The thirteen tree trunks and the indoor experimental scene.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541849&req=5

sensors-15-15661-f004: The thirteen tree trunks and the indoor experimental scene.
Mentions: In order to increase the target quantity, a further outside and indoor simulation is performed to reveal the influence of the distance and diameter on the diameter estimation error. For each abovementioned birch, the 2DTLS scanned all eight targets at a distance ranging from 2 m to 12.2 m every 0.6 m to the tree. Then, thirteen tree trunk sections with diameters in the range of 9–35 cm and lengths in the range of 40–49 cm are used in the indoor experiment. They are also placed at distances from the 2DTLS varying between 2 m and 12.1 m in 0.3 m steps. The diameter range and length of the trunks are recorded in Figure 4 and Table 1. In total, 378 sets of laser data integrating the outside and indoor measurement experiment are scanned to calculate the diameter error for a better statistical consequence.

Bottom Line: In this paper, a new algorithm to improve the accuracy of estimating diameter at breast height (DBH) for tree trunks in forest areas is proposed.Compared with previous works, this proposed method improves the accuracy of diameter estimation of trees significantly and effectively reduces the calculation time.Moreover, the experimental results indicate that this method is stable and suitable for the most challenging conditions, which has practical significance in improving the operating efficiency of forest harvester and reducing the risk of causing accidents.

View Article: PubMed Central - PubMed

Affiliation: School of Technology, Beijing Forestry University, Beijing 100083, China. kongjianlei_slgc@163.com.

ABSTRACT
In this paper, a new algorithm to improve the accuracy of estimating diameter at breast height (DBH) for tree trunks in forest areas is proposed. First, the information is collected by a two-dimensional terrestrial laser scanner (2DTLS), which emits laser pulses to generate a point cloud. After extraction and filtration, the laser point clusters of the trunks are obtained, which are optimized by an arithmetic means method. Then, an algebraic circle fitting algorithm in polar form is non-linearly optimized by the Levenberg-Marquardt method to form a new hybrid algorithm, which is used to acquire the diameters and positions of the trees. Compared with previous works, this proposed method improves the accuracy of diameter estimation of trees significantly and effectively reduces the calculation time. Moreover, the experimental results indicate that this method is stable and suitable for the most challenging conditions, which has practical significance in improving the operating efficiency of forest harvester and reducing the risk of causing accidents.

No MeSH data available.