Limits...
Optical Fiber Sensors for Aircraft Structural Health Monitoring.

García I, Zubia J, Durana G, Aldabaldetreku G, Illarramendi MA, Villatoro J - Sensors (Basel) (2015)

Bottom Line: Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors.Several practical applications for structures and engines we have been working on are reported in this article.With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel.

View Article: PubMed Central - PubMed

Affiliation: Department of Communications Engineering, E.T.S.I. of Bilbao, University of the Basque Country UPV/EHU, Alda. Urquijo s/n Bilbao 48013, Spain. iker.garciae@ehu.eus.

ABSTRACT
Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel.

No MeSH data available.


Related in: MedlinePlus

Possible vibrations of the blade during turbine operation: radial (green), axial (red) and tangential (blue). The turbine blade is courtesy of the Aeronautical Technologies Center.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541841&req=5

sensors-15-15494-f016: Possible vibrations of the blade during turbine operation: radial (green), axial (red) and tangential (blue). The turbine blade is courtesy of the Aeronautical Technologies Center.

Mentions: There are three different types of blade vibrations that can be analyzed, namely, radial, tangential and axial (see Figure 16). Currently, the sensor is being used to quantify the radial and tangential vibrations.


Optical Fiber Sensors for Aircraft Structural Health Monitoring.

García I, Zubia J, Durana G, Aldabaldetreku G, Illarramendi MA, Villatoro J - Sensors (Basel) (2015)

Possible vibrations of the blade during turbine operation: radial (green), axial (red) and tangential (blue). The turbine blade is courtesy of the Aeronautical Technologies Center.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541841&req=5

sensors-15-15494-f016: Possible vibrations of the blade during turbine operation: radial (green), axial (red) and tangential (blue). The turbine blade is courtesy of the Aeronautical Technologies Center.
Mentions: There are three different types of blade vibrations that can be analyzed, namely, radial, tangential and axial (see Figure 16). Currently, the sensor is being used to quantify the radial and tangential vibrations.

Bottom Line: Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors.Several practical applications for structures and engines we have been working on are reported in this article.With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel.

View Article: PubMed Central - PubMed

Affiliation: Department of Communications Engineering, E.T.S.I. of Bilbao, University of the Basque Country UPV/EHU, Alda. Urquijo s/n Bilbao 48013, Spain. iker.garciae@ehu.eus.

ABSTRACT
Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel.

No MeSH data available.


Related in: MedlinePlus