Limits...
A Novel 2D-to-3D Video Conversion Method Using Time-Coherent Depth Maps.

Yin S, Dong H, Jiang G, Liu L, Wei S - Sensors (Basel) (2015)

Bottom Line: In this paper, we propose a novel 2D-to-3D video conversion method for 3D entertainment applications. 3D entertainment is getting more and more popular and can be found in many contexts, such as TV and home gaming equipment. 3D image sensors are a new method to produce stereoscopic video content conveniently and at a low cost, and can thus meet the urgent demand for 3D videos in the 3D entertaiment market.Global depth gradient is computed according to image type while local depth refinement is related to color information.The experimental results prove that this novel method can adapt to different image types, reduce computational complexity and improve the temporal smoothness of generated 3D video.

View Article: PubMed Central - PubMed

Affiliation: Institute of Microelectronics, Tsinghua University, Beijing 100084, China. yinsy@tsinghua.edu.cn.

ABSTRACT
In this paper, we propose a novel 2D-to-3D video conversion method for 3D entertainment applications. 3D entertainment is getting more and more popular and can be found in many contexts, such as TV and home gaming equipment. 3D image sensors are a new method to produce stereoscopic video content conveniently and at a low cost, and can thus meet the urgent demand for 3D videos in the 3D entertaiment market. Generally, 2D image sensor and 2D-to-3D conversion chip can compose a 3D image sensor. Our study presents a novel 2D-to-3D video conversion algorithm which can be adopted in a 3D image sensor. In our algorithm, a depth map is generated by combining global depth gradient and local depth refinement for each frame of 2D video input. Global depth gradient is computed according to image type while local depth refinement is related to color information. As input 2D video content consists of a number of video shots, the proposed algorithm reuses the global depth gradient of frames within the same video shot to generate time-coherent depth maps. The experimental results prove that this novel method can adapt to different image types, reduce computational complexity and improve the temporal smoothness of generated 3D video.

No MeSH data available.


Rating scales used for evaluation. (a) Stereoscopic effect; (b) temporal smoothness.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541829&req=5

sensors-15-15246-f018: Rating scales used for evaluation. (a) Stereoscopic effect; (b) temporal smoothness.

Mentions: Subjective assessment was performed as well. A slightly modified version of single-stimulus presentation method in ITU-R BT.500-11 [19] was used to evaluate the results. The 3D videos synthesized from the aforementioned 2D videos were displayed on the 120 Hz 3D display. Twenty individuals were asked to view the generated stereoscopic videos with active-shutter glasses and rate each video based on two factors: stereoscopic effect and temporal smoothness. The two factors were assessed using a five-segment scale and mapped to a 100 point scale, as is shown in Figure 18.


A Novel 2D-to-3D Video Conversion Method Using Time-Coherent Depth Maps.

Yin S, Dong H, Jiang G, Liu L, Wei S - Sensors (Basel) (2015)

Rating scales used for evaluation. (a) Stereoscopic effect; (b) temporal smoothness.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541829&req=5

sensors-15-15246-f018: Rating scales used for evaluation. (a) Stereoscopic effect; (b) temporal smoothness.
Mentions: Subjective assessment was performed as well. A slightly modified version of single-stimulus presentation method in ITU-R BT.500-11 [19] was used to evaluate the results. The 3D videos synthesized from the aforementioned 2D videos were displayed on the 120 Hz 3D display. Twenty individuals were asked to view the generated stereoscopic videos with active-shutter glasses and rate each video based on two factors: stereoscopic effect and temporal smoothness. The two factors were assessed using a five-segment scale and mapped to a 100 point scale, as is shown in Figure 18.

Bottom Line: In this paper, we propose a novel 2D-to-3D video conversion method for 3D entertainment applications. 3D entertainment is getting more and more popular and can be found in many contexts, such as TV and home gaming equipment. 3D image sensors are a new method to produce stereoscopic video content conveniently and at a low cost, and can thus meet the urgent demand for 3D videos in the 3D entertaiment market.Global depth gradient is computed according to image type while local depth refinement is related to color information.The experimental results prove that this novel method can adapt to different image types, reduce computational complexity and improve the temporal smoothness of generated 3D video.

View Article: PubMed Central - PubMed

Affiliation: Institute of Microelectronics, Tsinghua University, Beijing 100084, China. yinsy@tsinghua.edu.cn.

ABSTRACT
In this paper, we propose a novel 2D-to-3D video conversion method for 3D entertainment applications. 3D entertainment is getting more and more popular and can be found in many contexts, such as TV and home gaming equipment. 3D image sensors are a new method to produce stereoscopic video content conveniently and at a low cost, and can thus meet the urgent demand for 3D videos in the 3D entertaiment market. Generally, 2D image sensor and 2D-to-3D conversion chip can compose a 3D image sensor. Our study presents a novel 2D-to-3D video conversion algorithm which can be adopted in a 3D image sensor. In our algorithm, a depth map is generated by combining global depth gradient and local depth refinement for each frame of 2D video input. Global depth gradient is computed according to image type while local depth refinement is related to color information. As input 2D video content consists of a number of video shots, the proposed algorithm reuses the global depth gradient of frames within the same video shot to generate time-coherent depth maps. The experimental results prove that this novel method can adapt to different image types, reduce computational complexity and improve the temporal smoothness of generated 3D video.

No MeSH data available.