Limits...
Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures.

Cañete E, Chen J, Díaz M, Llopis L, Reyna A, Rubio B - Sensors (Basel) (2015)

Bottom Line: Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks.The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed.In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency.

View Article: PubMed Central - PubMed

Affiliation: Department of Languages and Computer Science, University of Málaga, Boulevar Louis Pasteur 35, Málaga 29071, Spain. ecc@lcc.uma.es.

ABSTRACT
Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency.

No MeSH data available.


Related in: MedlinePlus

Evaluation scenario for the range tests.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541823&req=5

sensors-15-15101-f012: Evaluation scenario for the range tests.

Mentions: The goal of the mobility tests is to measure the amount of data that two radio modules are capable of exchanging when one of them is moving. This test simulates the scenario where the sensor node deployed in the railway infrastructure (static node) sends information to a radio module located on the train (mobile node). Tests simulate the train with a car driving at a controlled speed. The vehicle drives along a straight road with a length of 2.1 km, as shown in Figure 12. The sensor node located on the floor continuously transmits information to the car. The car starts from a location where the radios are out of range, passes next to the sensor node on the floor and continues until the radios are again out of range. An antenna of 2 dBi has been used for the receiver/transmitter respectively.


Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures.

Cañete E, Chen J, Díaz M, Llopis L, Reyna A, Rubio B - Sensors (Basel) (2015)

Evaluation scenario for the range tests.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541823&req=5

sensors-15-15101-f012: Evaluation scenario for the range tests.
Mentions: The goal of the mobility tests is to measure the amount of data that two radio modules are capable of exchanging when one of them is moving. This test simulates the scenario where the sensor node deployed in the railway infrastructure (static node) sends information to a radio module located on the train (mobile node). Tests simulate the train with a car driving at a controlled speed. The vehicle drives along a straight road with a length of 2.1 km, as shown in Figure 12. The sensor node located on the floor continuously transmits information to the car. The car starts from a location where the radios are out of range, passes next to the sensor node on the floor and continues until the radios are again out of range. An antenna of 2 dBi has been used for the receiver/transmitter respectively.

Bottom Line: Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks.The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed.In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency.

View Article: PubMed Central - PubMed

Affiliation: Department of Languages and Computer Science, University of Málaga, Boulevar Louis Pasteur 35, Málaga 29071, Spain. ecc@lcc.uma.es.

ABSTRACT
Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency.

No MeSH data available.


Related in: MedlinePlus