Limits...
Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures.

Cañete E, Chen J, Díaz M, Llopis L, Reyna A, Rubio B - Sensors (Basel) (2015)

Bottom Line: Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks.The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed.In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency.

View Article: PubMed Central - PubMed

Affiliation: Department of Languages and Computer Science, University of Málaga, Boulevar Louis Pasteur 35, Málaga 29071, Spain. ecc@lcc.uma.es.

ABSTRACT
Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency.

No MeSH data available.


Related in: MedlinePlus

RFID: communication architecture.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541823&req=5

sensors-15-15101-f010: RFID: communication architecture.

Mentions: In this proposed architecture, shown in Figure 10, the data will be read by the train at no additional cost to the energy monitoring system since RFID tags are typically passive elements. The RFID reader is therefore the element that is installed on the train and passes over each of the RFID tags deployed in the slab track to collect the information. The Arduino over which the system has been built needs a way to record data on the RFID tag prior to being read by the train. One proposal for this is using the Monza chip from the company Impinj [23]. These RFID chips, in addition to their normal function, can be read and written via an I2C line. This line would be used by the Arduino to program the tags with data from the sensors.


Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures.

Cañete E, Chen J, Díaz M, Llopis L, Reyna A, Rubio B - Sensors (Basel) (2015)

RFID: communication architecture.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541823&req=5

sensors-15-15101-f010: RFID: communication architecture.
Mentions: In this proposed architecture, shown in Figure 10, the data will be read by the train at no additional cost to the energy monitoring system since RFID tags are typically passive elements. The RFID reader is therefore the element that is installed on the train and passes over each of the RFID tags deployed in the slab track to collect the information. The Arduino over which the system has been built needs a way to record data on the RFID tag prior to being read by the train. One proposal for this is using the Monza chip from the company Impinj [23]. These RFID chips, in addition to their normal function, can be read and written via an I2C line. This line would be used by the Arduino to program the tags with data from the sensors.

Bottom Line: Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks.The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed.In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency.

View Article: PubMed Central - PubMed

Affiliation: Department of Languages and Computer Science, University of Málaga, Boulevar Louis Pasteur 35, Málaga 29071, Spain. ecc@lcc.uma.es.

ABSTRACT
Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency.

No MeSH data available.


Related in: MedlinePlus