Limits...
A Method for Remotely Sensing Vital Signs of Human Subjects Outdoors.

Li C, Chen F, Jin J, Lv H, Li S, Lu G, Wang J - Sensors (Basel) (2015)

Bottom Line: Although human bodies can be found by smart vehicles and drones equipped with cameras, it is difficult to verify if the person is alive or dead this way.Finally, the detection capabilities of the radar system and the signal processing method are verified through experiments which show that human respiration signals can be extracted when the subject is 7 m away outdoors.The method provided in this paper will be a promising way to search for human subjects outdoors.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China. lichuantao614@126.com.

ABSTRACT
After chemical or nuclear leakage or explosions, finding survivors is a huge challenge. Although human bodies can be found by smart vehicles and drones equipped with cameras, it is difficult to verify if the person is alive or dead this way. This paper describes a continuous wave radar sensor for remotely sensing the vital signs of human subjects. Firstly, a compact and portable 24 GHz Doppler radar system is designed to conduct non-contact detection of respiration signal. Secondly, in order to improve the quality of the respiration signals, the self-correlation and adaptive line enhancer (ALE) methods are proposed to minimize the interferences of any moving objects around the human subject. Finally, the detection capabilities of the radar system and the signal processing method are verified through experiments which show that human respiration signals can be extracted when the subject is 7 m away outdoors. The method provided in this paper will be a promising way to search for human subjects outdoors.

No MeSH data available.


Related in: MedlinePlus

Using self-correlation to extract periodic signal from noise.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541809&req=5

sensors-15-14830-f004: Using self-correlation to extract periodic signal from noise.

Mentions: The model of using a self-correlation method for recovering useful signals from noise is shown in Figure 4, where s(t) refers to a useful respiration signal, n(t) refers to the noise signal which is irrelevant to s(t), and the signal observed by radar is x(t): (6)x(t)=s(t)+n(t)


A Method for Remotely Sensing Vital Signs of Human Subjects Outdoors.

Li C, Chen F, Jin J, Lv H, Li S, Lu G, Wang J - Sensors (Basel) (2015)

Using self-correlation to extract periodic signal from noise.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541809&req=5

sensors-15-14830-f004: Using self-correlation to extract periodic signal from noise.
Mentions: The model of using a self-correlation method for recovering useful signals from noise is shown in Figure 4, where s(t) refers to a useful respiration signal, n(t) refers to the noise signal which is irrelevant to s(t), and the signal observed by radar is x(t): (6)x(t)=s(t)+n(t)

Bottom Line: Although human bodies can be found by smart vehicles and drones equipped with cameras, it is difficult to verify if the person is alive or dead this way.Finally, the detection capabilities of the radar system and the signal processing method are verified through experiments which show that human respiration signals can be extracted when the subject is 7 m away outdoors.The method provided in this paper will be a promising way to search for human subjects outdoors.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China. lichuantao614@126.com.

ABSTRACT
After chemical or nuclear leakage or explosions, finding survivors is a huge challenge. Although human bodies can be found by smart vehicles and drones equipped with cameras, it is difficult to verify if the person is alive or dead this way. This paper describes a continuous wave radar sensor for remotely sensing the vital signs of human subjects. Firstly, a compact and portable 24 GHz Doppler radar system is designed to conduct non-contact detection of respiration signal. Secondly, in order to improve the quality of the respiration signals, the self-correlation and adaptive line enhancer (ALE) methods are proposed to minimize the interferences of any moving objects around the human subject. Finally, the detection capabilities of the radar system and the signal processing method are verified through experiments which show that human respiration signals can be extracted when the subject is 7 m away outdoors. The method provided in this paper will be a promising way to search for human subjects outdoors.

No MeSH data available.


Related in: MedlinePlus