Limits...
Impact of extrusion processing conditions on lipid peroxidation and storage stability of full-fat flaxseed meal.

Imran M, Anjum FM, Ahmad N, Khan MK, Mushtaq Z, Nadeem M, Hussain S - Lipids Health Dis (2015)

Bottom Line: The extrusion processing at high barrel exit temperature (140 °C) significantly reduced the cyanogenic compounds (84 %), tannin (73 %) and mucilage (27 %) in the flaxseed meal.The α-linolenic acid content and lipid peroxidation did not significantly change after extrusion processing or during storage at the end of 60 days.The present study suggested that extrusion of flaxseed meal at optimum conditions and stored for 60 days did not change the stability of full-fat flaxseed meal and can be used as supplement or ingredient for the production of various healthier products.

View Article: PubMed Central - PubMed

Affiliation: Institute of Home and Food Sciences, Faculty of Science and Technology, Government College University, Faisalabad, 38000, Pakistan. imran@gcuf.edu.pk.

ABSTRACT

Background: The full-fat flaxseed (Linum usitatissimum L.) meal has obtained relatively new flourished concept as food or feedstuff for the development of healthier products. It provides favorable balance of polyunsaturated, monounsaturated and saturated fatty acids. However, flaxseed meal may be susceptible to oxidation by exposure to various storage conditions which is extremely undesirable and produces toxic compounds to human health. Another consideration in the application of flaxseed meal relates to the presence of anti-nutritional compounds that need to be minimized using appropriate processing method. The present research work was conducted to evaluate the impact of extrusion processing conditions and storage of full-fat flaxseed meal on functional characteristics such as α-linolenic acid content, lipid peroxidation and sensory attributes.

Methods: The raw flaxseed meal was analyzed for cyanogenic glycosides, tannin and mucilage anti-nutritional compounds. Fatty acids composition was quantified by gas chromatography. The meal was extruded at barrel exit temperature (100-140 °C), screw speed (50-150 rpm), feed rate (30-90 kg/h) and feed moisture (10-30 %) for reduction of anti-nutritional compounds. The raw and extruded meals were stored for a ninety-day period under room conditions (20-25 °C). Lipid peroxidation was analyzed by peroxide, free fatty acids, conjugated dienes, total volatiles and malondialdehyde assay. Color, aroma and overall acceptability attributes were evaluated by sensory multiple comparison tests.

Results: The raw flaxseed meal possessed significant amount of anti-nutritional compounds, lipid and α-linolenic acid contents. The extrusion processing at high barrel exit temperature (140 °C) significantly reduced the cyanogenic compounds (84 %), tannin (73 %) and mucilage (27 %) in the flaxseed meal. The α-linolenic acid content and lipid peroxidation did not significantly change after extrusion processing or during storage at the end of 60 days. Fluctuations in sensory attributes occurred during storage, but at the end of 90 days, only the extruded samples presented negative effect and showed lowest consumer acceptability.

Conclusions: The present study suggested that extrusion of flaxseed meal at optimum conditions and stored for 60 days did not change the stability of full-fat flaxseed meal and can be used as supplement or ingredient for the production of various healthier products.

No MeSH data available.


Related in: MedlinePlus

Effect of extrusion processing conditions and storage period on lipid oxidation of full-fat flaxseed meal (a: Peroxide value, b: Free fatty acids value and c: Malondialdehyde value)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4541741&req=5

Fig1: Effect of extrusion processing conditions and storage period on lipid oxidation of full-fat flaxseed meal (a: Peroxide value, b: Free fatty acids value and c: Malondialdehyde value)

Mentions: The effects of various extrusion conditions and storage on lipid peroxidation indicators of the flaxseed meal are shown in Fig. 1. The raw flaxseed meal samples showed non-significant changes in PV, FFA, conjugated dienes, total volatiles, malondialdehyde, linoleic and α-linolenic acid values throughout the 90 days storage period. The different extruded flaxseed meal samples started with similar PV (between 0.13 and 0.16 meq/kg) and the slope of the initial change with storage time was also similar (Fig. 1a). The PV of samples extruded at BET (140 °C), SS (100 rpm), FR (60 kg/h) and FM (30 %) reached their peaks after 90 days. Peroxide levels of the flaxseed oil cake were below the threshold limits after 6 months storage at 20 °C [37]. Both Linott and the mixed variety flaxseed were stable over 128 day of storage at 23 ± 2 °C as measured by PV [38]. The composition of flaxseed changed only slightly during storage over 6 months [39]. The PV of oil extracted from flaxseed meal, an empirical measure of oxidation products, is approximately 2 [40]. The peroxides are considered as early oxidation products with relatively short induction periods during which they form, accumulate and dissipate [41]. It seems true that the extruded flaxseed meal samples stored for 90 days were relatively stable and never exceeded the limit of 10 (meq/kg) PV considered as a threshold limit [14].Fig 1


Impact of extrusion processing conditions on lipid peroxidation and storage stability of full-fat flaxseed meal.

Imran M, Anjum FM, Ahmad N, Khan MK, Mushtaq Z, Nadeem M, Hussain S - Lipids Health Dis (2015)

Effect of extrusion processing conditions and storage period on lipid oxidation of full-fat flaxseed meal (a: Peroxide value, b: Free fatty acids value and c: Malondialdehyde value)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4541741&req=5

Fig1: Effect of extrusion processing conditions and storage period on lipid oxidation of full-fat flaxseed meal (a: Peroxide value, b: Free fatty acids value and c: Malondialdehyde value)
Mentions: The effects of various extrusion conditions and storage on lipid peroxidation indicators of the flaxseed meal are shown in Fig. 1. The raw flaxseed meal samples showed non-significant changes in PV, FFA, conjugated dienes, total volatiles, malondialdehyde, linoleic and α-linolenic acid values throughout the 90 days storage period. The different extruded flaxseed meal samples started with similar PV (between 0.13 and 0.16 meq/kg) and the slope of the initial change with storage time was also similar (Fig. 1a). The PV of samples extruded at BET (140 °C), SS (100 rpm), FR (60 kg/h) and FM (30 %) reached their peaks after 90 days. Peroxide levels of the flaxseed oil cake were below the threshold limits after 6 months storage at 20 °C [37]. Both Linott and the mixed variety flaxseed were stable over 128 day of storage at 23 ± 2 °C as measured by PV [38]. The composition of flaxseed changed only slightly during storage over 6 months [39]. The PV of oil extracted from flaxseed meal, an empirical measure of oxidation products, is approximately 2 [40]. The peroxides are considered as early oxidation products with relatively short induction periods during which they form, accumulate and dissipate [41]. It seems true that the extruded flaxseed meal samples stored for 90 days were relatively stable and never exceeded the limit of 10 (meq/kg) PV considered as a threshold limit [14].Fig 1

Bottom Line: The extrusion processing at high barrel exit temperature (140 °C) significantly reduced the cyanogenic compounds (84 %), tannin (73 %) and mucilage (27 %) in the flaxseed meal.The α-linolenic acid content and lipid peroxidation did not significantly change after extrusion processing or during storage at the end of 60 days.The present study suggested that extrusion of flaxseed meal at optimum conditions and stored for 60 days did not change the stability of full-fat flaxseed meal and can be used as supplement or ingredient for the production of various healthier products.

View Article: PubMed Central - PubMed

Affiliation: Institute of Home and Food Sciences, Faculty of Science and Technology, Government College University, Faisalabad, 38000, Pakistan. imran@gcuf.edu.pk.

ABSTRACT

Background: The full-fat flaxseed (Linum usitatissimum L.) meal has obtained relatively new flourished concept as food or feedstuff for the development of healthier products. It provides favorable balance of polyunsaturated, monounsaturated and saturated fatty acids. However, flaxseed meal may be susceptible to oxidation by exposure to various storage conditions which is extremely undesirable and produces toxic compounds to human health. Another consideration in the application of flaxseed meal relates to the presence of anti-nutritional compounds that need to be minimized using appropriate processing method. The present research work was conducted to evaluate the impact of extrusion processing conditions and storage of full-fat flaxseed meal on functional characteristics such as α-linolenic acid content, lipid peroxidation and sensory attributes.

Methods: The raw flaxseed meal was analyzed for cyanogenic glycosides, tannin and mucilage anti-nutritional compounds. Fatty acids composition was quantified by gas chromatography. The meal was extruded at barrel exit temperature (100-140 °C), screw speed (50-150 rpm), feed rate (30-90 kg/h) and feed moisture (10-30 %) for reduction of anti-nutritional compounds. The raw and extruded meals were stored for a ninety-day period under room conditions (20-25 °C). Lipid peroxidation was analyzed by peroxide, free fatty acids, conjugated dienes, total volatiles and malondialdehyde assay. Color, aroma and overall acceptability attributes were evaluated by sensory multiple comparison tests.

Results: The raw flaxseed meal possessed significant amount of anti-nutritional compounds, lipid and α-linolenic acid contents. The extrusion processing at high barrel exit temperature (140 °C) significantly reduced the cyanogenic compounds (84 %), tannin (73 %) and mucilage (27 %) in the flaxseed meal. The α-linolenic acid content and lipid peroxidation did not significantly change after extrusion processing or during storage at the end of 60 days. Fluctuations in sensory attributes occurred during storage, but at the end of 90 days, only the extruded samples presented negative effect and showed lowest consumer acceptability.

Conclusions: The present study suggested that extrusion of flaxseed meal at optimum conditions and stored for 60 days did not change the stability of full-fat flaxseed meal and can be used as supplement or ingredient for the production of various healthier products.

No MeSH data available.


Related in: MedlinePlus