Limits...
Topology driven modeling: the IS metaphor.

Merelli E, Pettini M, Rasetti M - Nat Comput (2015)

Bottom Line: The data topological analysis will select global features, reducible neither to a mere subgraph nor to a metric or vector space.How the immune system reacts, how it evolves, how it responds to stimuli is the result of an interaction that took place among many entities constrained in specific configurations which are relational.Within this metaphor, the proposed method turns out to be a global topological application of the S[B] paradigm for modeling complex systems.

View Article: PubMed Central - PubMed

Affiliation: School of Science and Technology, University of Camerino, Camerino, Italy.

ABSTRACT

In order to define a new method for analyzing the immune system within the realm of Big Data, we bear on the metaphor provided by an extension of Parisi's model, based on a mean field approach. The novelty is the multilinearity of the couplings in the configurational variables. This peculiarity allows us to compare the partition function [Formula: see text] with a particular functor of topological field theory-the generating function of the Betti numbers of the state manifold of the system-which contains the same global information of the system configurations and of the data set representing them. The comparison between the Betti numbers of the model and the real Betti numbers obtained from the topological analysis of phenomenological data, is expected to discover hidden n-ary relations among idiotypes and anti-idiotypes. The data topological analysis will select global features, reducible neither to a mere subgraph nor to a metric or vector space. How the immune system reacts, how it evolves, how it responds to stimuli is the result of an interaction that took place among many entities constrained in specific configurations which are relational. Within this metaphor, the proposed method turns out to be a global topological application of the S[B] paradigm for modeling complex systems.

No MeSH data available.


Jerne’s idiotypic network; -body interactions
© Copyright Policy - OpenAccess
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4541713&req=5

Fig1: Jerne’s idiotypic network; -body interactions

Mentions: Cells and molecules of the immune system not only recognize foreign substances; they react and regulate each other, so that the immune system can be seen as a network of interacting cells and antibodies. This perspective is known as the idiotypic or immune network theory (Jerne 1974). It refers to the immune system as a complex process that takes place at the cellular level for protecting organisms from infectious agents (the antigens), which are antibody generators. In the scheme proposed by Jerne, it is the antigen that provokes an immune response and each antibody is represented as a large Y-shaped protein. The immune system uses this protein to identify and neutralize foreign objects. The antibody can recognize and bind a specific part of the antigen; resorting to this binding mechanism it can block the attack. Moreover, in Jerne’s network theory, antibodies are capable of being recognized by other antibodies; whenever this happens the former is suppressed and its concentration is reduced while the latter is stimulated and its concentration increases (see Fig. 1).Fig. 1


Topology driven modeling: the IS metaphor.

Merelli E, Pettini M, Rasetti M - Nat Comput (2015)

Jerne’s idiotypic network; -body interactions
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4541713&req=5

Fig1: Jerne’s idiotypic network; -body interactions
Mentions: Cells and molecules of the immune system not only recognize foreign substances; they react and regulate each other, so that the immune system can be seen as a network of interacting cells and antibodies. This perspective is known as the idiotypic or immune network theory (Jerne 1974). It refers to the immune system as a complex process that takes place at the cellular level for protecting organisms from infectious agents (the antigens), which are antibody generators. In the scheme proposed by Jerne, it is the antigen that provokes an immune response and each antibody is represented as a large Y-shaped protein. The immune system uses this protein to identify and neutralize foreign objects. The antibody can recognize and bind a specific part of the antigen; resorting to this binding mechanism it can block the attack. Moreover, in Jerne’s network theory, antibodies are capable of being recognized by other antibodies; whenever this happens the former is suppressed and its concentration is reduced while the latter is stimulated and its concentration increases (see Fig. 1).Fig. 1

Bottom Line: The data topological analysis will select global features, reducible neither to a mere subgraph nor to a metric or vector space.How the immune system reacts, how it evolves, how it responds to stimuli is the result of an interaction that took place among many entities constrained in specific configurations which are relational.Within this metaphor, the proposed method turns out to be a global topological application of the S[B] paradigm for modeling complex systems.

View Article: PubMed Central - PubMed

Affiliation: School of Science and Technology, University of Camerino, Camerino, Italy.

ABSTRACT

In order to define a new method for analyzing the immune system within the realm of Big Data, we bear on the metaphor provided by an extension of Parisi's model, based on a mean field approach. The novelty is the multilinearity of the couplings in the configurational variables. This peculiarity allows us to compare the partition function [Formula: see text] with a particular functor of topological field theory-the generating function of the Betti numbers of the state manifold of the system-which contains the same global information of the system configurations and of the data set representing them. The comparison between the Betti numbers of the model and the real Betti numbers obtained from the topological analysis of phenomenological data, is expected to discover hidden n-ary relations among idiotypes and anti-idiotypes. The data topological analysis will select global features, reducible neither to a mere subgraph nor to a metric or vector space. How the immune system reacts, how it evolves, how it responds to stimuli is the result of an interaction that took place among many entities constrained in specific configurations which are relational. Within this metaphor, the proposed method turns out to be a global topological application of the S[B] paradigm for modeling complex systems.

No MeSH data available.