Limits...
Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements.

Buxa SV, Degola F, Polizzotto R, De Marco F, Loschi A, Kogel KH, di Toppi LS, van Bel AJ, Musetti R - Front Plant Sci (2015)

Bottom Line: We investigated modifications of the sieve-element ultrastructure induced in tomato plants by 'Candidatus Phytoplasma solani,' the pathogen associated with the stolbur disease.Western blot analysis revealed a decrease of actin and an increase of ER-resident chaperone luminal binding protein (BiP) in midribs of phytoplasma-infected plants.Collectively, the studies provided novel insights into ultrastructural responses of host sieve elements to phloem-restricted prokaryotes.

View Article: PubMed Central - PubMed

Affiliation: Department of Phytopathology and Applied Zoology, Justus Liebig University Giessen, Germany.

ABSTRACT
Phytoplasmas, biotrophic wall-less prokaryotes, only reside in sieve elements of their host plants. The essentials of the intimate interaction between phytoplasmas and their hosts are poorly understood, which calls for research on potential ultrastructural modifications. We investigated modifications of the sieve-element ultrastructure induced in tomato plants by 'Candidatus Phytoplasma solani,' the pathogen associated with the stolbur disease. Phytoplasma infection induces a drastic re-organization of sieve-element substructures including changes in plasma membrane surface and distortion of the sieve-element reticulum. Observations of healthy and stolbur-diseased plants provided evidence for the emergence of structural links between sieve-element plasma membrane and phytoplasmas. One-sided actin aggregates on the phytoplasma surface also inferred a connection between phytoplasma and sieve-element cytoskeleton. Actin filaments displaced from the sieve-element mictoplasm to the surface of the phytoplasmas in infected sieve elements. Western blot analysis revealed a decrease of actin and an increase of ER-resident chaperone luminal binding protein (BiP) in midribs of phytoplasma-infected plants. Collectively, the studies provided novel insights into ultrastructural responses of host sieve elements to phloem-restricted prokaryotes.

No MeSH data available.


Related in: MedlinePlus

(A–D) TEM micrographs of main-vein cross-sections of stolbur-diseased tomato leaves. Aggregated of SE actin in contact with the phytoplasma cells were evidenced by a TEM-immunogold technique. In insets, areas of interest of (A–D), are magnified. P, phytoplasma; SE, sieve element; SP, sieve pore. Scale bars = 200 nm
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4541602&req=5

Figure 4: (A–D) TEM micrographs of main-vein cross-sections of stolbur-diseased tomato leaves. Aggregated of SE actin in contact with the phytoplasma cells were evidenced by a TEM-immunogold technique. In insets, areas of interest of (A–D), are magnified. P, phytoplasma; SE, sieve element; SP, sieve pore. Scale bars = 200 nm

Mentions: In infected samples, high spatial resolution images revealed a co-localization of sieve-element actin and phytoplasma cells (Figures 4A–D). Ultrastructural images obtained from infected samples indicated that antibody dots exclusively resided in the sieve-element lumen in association with phytoplasma cells and were always aggregated at one side of the phytoplasma membrane surface (Figures 4A–D). Within sieve pores too, actin was localized to phytoplasma cells (Figure 4D). These actin fields often co-localized with the tubular corridors between phytoplasma body and plasma membrane (e.g., Figure 4D).


Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements.

Buxa SV, Degola F, Polizzotto R, De Marco F, Loschi A, Kogel KH, di Toppi LS, van Bel AJ, Musetti R - Front Plant Sci (2015)

(A–D) TEM micrographs of main-vein cross-sections of stolbur-diseased tomato leaves. Aggregated of SE actin in contact with the phytoplasma cells were evidenced by a TEM-immunogold technique. In insets, areas of interest of (A–D), are magnified. P, phytoplasma; SE, sieve element; SP, sieve pore. Scale bars = 200 nm
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4541602&req=5

Figure 4: (A–D) TEM micrographs of main-vein cross-sections of stolbur-diseased tomato leaves. Aggregated of SE actin in contact with the phytoplasma cells were evidenced by a TEM-immunogold technique. In insets, areas of interest of (A–D), are magnified. P, phytoplasma; SE, sieve element; SP, sieve pore. Scale bars = 200 nm
Mentions: In infected samples, high spatial resolution images revealed a co-localization of sieve-element actin and phytoplasma cells (Figures 4A–D). Ultrastructural images obtained from infected samples indicated that antibody dots exclusively resided in the sieve-element lumen in association with phytoplasma cells and were always aggregated at one side of the phytoplasma membrane surface (Figures 4A–D). Within sieve pores too, actin was localized to phytoplasma cells (Figure 4D). These actin fields often co-localized with the tubular corridors between phytoplasma body and plasma membrane (e.g., Figure 4D).

Bottom Line: We investigated modifications of the sieve-element ultrastructure induced in tomato plants by 'Candidatus Phytoplasma solani,' the pathogen associated with the stolbur disease.Western blot analysis revealed a decrease of actin and an increase of ER-resident chaperone luminal binding protein (BiP) in midribs of phytoplasma-infected plants.Collectively, the studies provided novel insights into ultrastructural responses of host sieve elements to phloem-restricted prokaryotes.

View Article: PubMed Central - PubMed

Affiliation: Department of Phytopathology and Applied Zoology, Justus Liebig University Giessen, Germany.

ABSTRACT
Phytoplasmas, biotrophic wall-less prokaryotes, only reside in sieve elements of their host plants. The essentials of the intimate interaction between phytoplasmas and their hosts are poorly understood, which calls for research on potential ultrastructural modifications. We investigated modifications of the sieve-element ultrastructure induced in tomato plants by 'Candidatus Phytoplasma solani,' the pathogen associated with the stolbur disease. Phytoplasma infection induces a drastic re-organization of sieve-element substructures including changes in plasma membrane surface and distortion of the sieve-element reticulum. Observations of healthy and stolbur-diseased plants provided evidence for the emergence of structural links between sieve-element plasma membrane and phytoplasmas. One-sided actin aggregates on the phytoplasma surface also inferred a connection between phytoplasma and sieve-element cytoskeleton. Actin filaments displaced from the sieve-element mictoplasm to the surface of the phytoplasmas in infected sieve elements. Western blot analysis revealed a decrease of actin and an increase of ER-resident chaperone luminal binding protein (BiP) in midribs of phytoplasma-infected plants. Collectively, the studies provided novel insights into ultrastructural responses of host sieve elements to phloem-restricted prokaryotes.

No MeSH data available.


Related in: MedlinePlus